Control of a multi-node small body flexible lander based on the principle of energy balance
Authors
CHAI JingXuan, MEI Jie, GONG YouMin, GUO XuFa, MA GuangFu, WU WeiRen
Citation
- Journal: SCIENTIA SINICA Physica, Mechanica & Astronomica
- Year: 2025
- Volume: 55
- Issue: 2
- Pages: 224514
- Publisher: Science China Press., Co. Ltd.
- DOI: 10.1360/sspma-2024-0305
BibTeX
@article{JingXuan_2024,
title={{Control of a multi-node small body flexible lander based on the principle of energy balance}},
volume={55},
ISSN={1674-7275},
DOI={10.1360/sspma-2024-0305},
number={2},
journal={SCIENTIA SINICA Physica, Mechanica & Astronomica},
publisher={Science China Press., Co. Ltd.},
author={JingXuan, CHAI and Jie, MEI and YouMin, GONG and XuFa, GUO and GuangFu, MA and WeiRen, WU},
year={2024},
pages={224514}
}
References
- Wu W R, Yu D Y. Development of deep space exploration and its future key technologies (in Chinese). J Deep Space Explor, 2014, 1: 5–17.
- Zhang R Q, Huang J C, He R W, et al. The development overview of asteroid exploration(in Chinese). J Deep Space Explor, 2019, 6: 417–423.
- Ji, J. & Huang, X. Tianwen-1 releasing first colored global map of Mars. Science China Physics, Mechanics & Astronomy vol. 66 (2023) – 10.1007/s11433-023-2154-6
- Zhang, X. et al. Developing Prototype Simulants for Surface Materials and Morphology of Near Earth Asteroid 2016 HO3. Space: Science & Technology vol. 2021 (2021) – 10.34133/2021/9874929
- 李俊峰. Special issue: Dynamics and control for asteroid exploration. SCIENTIA SINICA Physica, Mechanica & Astronomica vol. 49 084501 (2019) – 10.1360/sspma-2019-0156
- Wei, B. & Shang, H. Global Gravity Field Modeling of Small Bodies with Heterogeneous Mass Distributions. Journal of Guidance, Control, and Dynamics vol. 45 248–261 (2022) – 10.2514/1.g005945
- Yano, H. et al. Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science vol. 312 1350–1353 (2006) – 10.1126/science.1126164
- Chai J X, Zhao H B, Mei J, et al. Review on intelligent execution technologies of deep space probe command sequences (in Chinese). J Astronaut, 2023, 44: 1645–1658.
- Biele, J. et al. The landing(s) of Philae and inferences about comet surface mechanical properties. Science vol. 349 (2015) – 10.1126/science.aaa9816
- Fang J C, Ning X L. Ma X, et al. A survey of autonomous astronomical navigation technology for deep space detectors (in Chinese). Flight Control Detect, 2018, 1: 1–15.
- Scheeres, D. J. Dynamics about Uniformly Rotating Triaxial Ellipsoids: Applications to Asteroids. Icarus vol. 110 225–238 (1994) – 10.1006/icar.1994.1118
- WANG, S., YU, Y. & LV, J. Large-scale modeling of parametric asteroid surfaces using polynomial series. SCIENTIA SINICA Physica, Mechanica & Astronomica vol. 49 084507 (2019) – 10.1360/sspma-2019-0011
- Gong, Y., Guo, Y., Lyu, Y., Ma, G. & Wang, P. Hybrid Zero-Effort-Miss/Zero-Effort-Velocity Guidance for Powered Descent Phase. Journal of Guidance, Control, and Dynamics vol. 47 1026–1037 (2024) – 10.2514/1.g007039
- Dechambre, D. & Scheeres, D. J. Transformation of spherical harmonic coefficients to ellipsoidal harmonic coefficients. Astronomy & Astrophysics vol. 387 1114–1122 (2002) – 10.1051/0004-6361:20020466
- Cheng B, Baoyin H X. Numerical simulation of asteroid surface impact sampling (in Chinese). Flight Control Detect, 2019, 2: 46–51.
- Scheeres, D. J., Williams, B. G. & Miller, J. K. Evaluation of the Dynamic Environment of an Asteroid: Applications to 433 Eros. Journal of Guidance, Control, and Dynamics vol. 23 466–475 (2000) – 10.2514/2.4552
- Wen, T., Zeng, X., Circi, C. & Gao, Y. Hop Reachable Domain on Irregularly Shaped Asteroids. Journal of Guidance, Control, and Dynamics vol. 43 1269–1283 (2020) – 10.2514/1.g004682
- ZENG, X., WEN, T. & LI, Z. Recent development of landing dynamics over small celestial bodies. SCIENTIA SINICA Technologica (2024) doi:10.1360/sst-2023-0078 – 10.1360/sst-2023-0078
- Li, S., Cui, P. & Cui, H. Autonomous navigation and guidance for landing on asteroids. Aerospace Science and Technology vol. 10 239–247 (2006) – 10.1016/j.ast.2005.12.003
- Furfaro, R., Cersosimo, D. & Wibben, D. R. Asteroid Precision Landing via Multiple Sliding Surfaces Guidance Techniques. Journal of Guidance, Control, and Dynamics vol. 36 1075–1092 (2013) – 10.2514/1.58246
- Malyuta, D., Yu, Y., Elango, P. & Açıkmeşe, B. Advances in trajectory optimization for space vehicle control. Annual Reviews in Control vol. 52 282–315 (2021) – 10.1016/j.arcontrol.2021.04.013
- Liu, X., Li, S. & Xin, M. Comparison of powered descent guidance laws for planetary pin-point landing. Acta Astronautica vol. 187 101–114 (2021) – 10.1016/j.actaastro.2021.06.003
- Pinson, R. M. & Lu, P. Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids. Journal of Guidance, Control, and Dynamics vol. 41 1243–1256 (2018) – 10.2514/1.g003045
- Cui, P., Zhang, C. & Liang, Z. Closed-Loop Guidance for Asteroid Landing Using Stability-Related Control and Three-Dimensional Convex Curvature Constraints. IEEE Transactions on Aerospace and Electronic Systems vol. 59 2807–2822 (2023) – 10.1109/taes.2022.3219043
- Gong Y M, Guo Y N, Ma G F, et al. Drag-based anti-saturation fixed time tracking guidance for mars atmosphere entry (in Chinese). Flight Control Detect, 2020, 3: 48–57.
- JIANG, Y. & LI, H. Impact and stick-slip dynamics in the soft-landing on minor celestial bodies. SCIENTIA SINICA Physica, Mechanica & Astronomica vol. 49 084504 (2019) – 10.1360/sspma2018-00350
- Surovik, D., Wang, K., Vespignani, M., Bruce, J. & Bekris, K. E. Adaptive tensegrity locomotion: Controlling a compliant icosahedron with symmetry-reduced reinforcement learning. The International Journal of Robotics Research vol. 40 375–396 (2019) – 10.1177/0278364919859443
- Zhai, G., Li, J., Sun, Y. & Zheng, H. Research on Asteroid Landing with a New Flexible Spacecraft. Journal of Aerospace Engineering vol. 35 (2022) – 10.1061/(asce)as.1943-5525.0001466
- Feng, R., Yoshida, K., Li, J. & Baoyin, H. Rebound stabilization for an asteroid lander by flexible plate design. Aerospace Science and Technology vol. 131 107969 (2022) – 10.1016/j.ast.2022.107969
- Zhang, Y., Feng, R., Yu, Y., Liu, J. & Baoyin, H. Asteroid Capture Dynamics and Control Using a Large-Scale Flexible Net. IEEE Transactions on Aerospace and Electronic Systems vol. 58 4033–4043 (2022) – 10.1109/taes.2022.3157573
- Cui P Y, Zhang C Y, Zhu S Y, et al. Technologies for flexible landing on small celestial bodies (in Chinese). J Astronaut, 2023, 44: 805–816.
- Cui P Y, Lu X X, Zhu S Y, et al. Cooperative state estimation method for small celestial body flexible landing (in Chinese). J Astronaut, 2022, 43: 1219–1226.
- Wang, B. et al. Asteroid landing analysis for multi-node probe based on spring damping device. Advances in Space Research vol. 72 3464–3476 (2023) – 10.1016/j.asr.2023.06.014
- Yan, W. & Baoyin, H. Position-attitude coupling guidance and control for asteroid landing with a flexible lander. Aerospace Science and Technology vol. 141 108567 (2023) – 10.1016/j.ast.2023.108567
- Chen, Z., Long, J. & Cui, P. Trajectory design for landing on small celestial body with flexible lander. Acta Astronautica vol. 212 492–504 (2023) – 10.1016/j.actaastro.2023.08.019
- Liang, Z., Lu, B. & Zhu, S. Controllable cone for horizontal landing on asteroids using a flexible probe. Aerospace Science and Technology vol. 145 108869 (2024) – 10.1016/j.ast.2024.108869
- Wang B, Xu R, Li Z Y, et al. Dynamic temporal constraint reasoning method for flexible landing mission planning of small celestial body (in Chinese). J Astronaut, 2024, 45: 212–221.
- Chai J X, Wu X Y, Gong Y M, et al. Non-uniform constraints processing for multi-node flexible lander (in Chinese). J Deep Space Explor, 2024, 11:225–232.
- Li, N., Borja, P., Scherpen, J. M. A., van der Schaft, A. & Mahony, R. Passivity-Based Trajectory Tracking and Formation Control of Nonholonomic Wheeled Robots Without Velocity Measurements. IEEE Transactions on Automatic Control vol. 68 7951–7957 (2023) – 10.1109/tac.2023.3258320
- Chai, J., Gong, Y., Mei, J., Wang, P. & Ma, G. Modeling and Trajectory Tracking Control for a Novel Multinode Flexible Small-Body Lander Based on a Port-Hamilton Framework. Space: Science & Technology vol. 4 (2024) – 10.34133/space.0113
- Ping, J. Thermal environmental effect on the Chang’E-5 lander revealed by in-situ temperature data. Science China Physics, Mechanics & Astronomy vol. 66 (2023) – 10.1007/s11433-023-2100-3
- SHAO, W. et al. Visual navigation algorithm for asteroid lander based on irregular curve matching. SCIENTIA SINICA Physica, Mechanica & Astronomica vol. 52 214510 (2021) – 10.1360/sspma-2020-0388
- ZHU, S., XIU, Y., LIU, D., ZHANG, N. & XU, R. Two-spacecraft cooperative optical navigation for binary-asteroid exploration. SCIENTIA SINICA Physica, Mechanica & Astronomica vol. 52 214506 (2021) – 10.1360/sspma-2020-0500
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Camlibel, M. K. & van der Schaft, A. J. Port-Hamiltonian Systems Theory and Monotonicity. SIAM Journal on Control and Optimization vol. 61 2193–2221 (2023) – 10.1137/22m1503749