Boundary Port Hamiltonian systems of conservation laws coupled by a moving interface
Authors
Mamadou Diagne, Bernhard Maschke
Abstract
In this paper we consider the port-Hamiltonian formulation of systems of two conservation laws defined on two complementary intervals of some interval of the real line and coupled by some moving interface. We recall first how two port Hamiltonian systems coupled by an interface may be expressed as an port Hamiltonian systems augmented with two variables being the characteristic functions of of two spatial domains. Then we consider the case of a moving interface and show that it may be expressed as the preceeding port Hamiltonian system augmented with an input, being the velocity of the interface and define a conjugated output variable. We conclude by giving some definition of the passivity of interface relations coupling the external variables associated with the interface.
Keywords
Boundary port Hamiltonian systems; PDE’s with moving interface
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 19
- Pages: 265–270
- Publisher: Elsevier BV
- DOI: 10.3182/20120829-3-it-4022.00050
- Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
BibTeX
@article{Diagne_2012,
title={{Boundary Port Hamiltonian systems of conservation laws coupled by a moving interface}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120829-3-it-4022.00050},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Diagne, Mamadou and Maschke, Bernhard},
year={2012},
pages={265--270}
}
References
- Abgrall, R. & Karni, S. Computations of Compressible Multifluids. Journal of Computational Physics 169, 594–623 (2001) – 10.1006/jcph.2000.6685
- Ambroso, (2008)
- Ambroso, (2008)
- Boutin, (2009)
- Boutin, Dafermos regularization for interface coupling of conservation laws. Hyperbolic Problems: Theory, Numerics, Applications (2008)
- Boutin, (2008)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Choulak, S. et al. Generic Dynamic Model for Simulation and Control of Reactive Extrusion. Ind. Eng. Chem. Res. 43, 7373–7382 (2004) – 10.1021/ie0342964
- Diagne, Modélisation et commande dun système déquations aux dérivées partielles à frontière mobile : application au procédé dextrusion. Journal Européen des Systémes Automatisées (2011)
- Godlewski, E., Le Thanh, K.-C. & Raviart, P.-A. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems. ESAIM: M2AN 39, 649–692 (2005) – 10.1051/m2an:2005029
- Godlewski, E. & Raviart, P.-A. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numerische Mathematik 97, 81–130 (2004) – 10.1007/s00211-002-0438-5
- Macchelli, (2009)
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, (2005)
- Ortega, R., de Rinaldis, A., Spong, M. W., Lee, S. & Nam, K. On Compensation of Wave Reflections in Transmission Lines and Applications to the Overvoltage Problem AC Motor Drives. IEEE Trans. Automat. Contr. 49, 1757–1762 (2004) – 10.1109/tac.2004.835405
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176