Bond-Graph Input-State-Output Port-Hamiltonian Formulation of Memristive Networks for emulation of Josephson Junction Circuits
Authors
Israa Badr Nasser Al-Mashhadani, Sillas Hadjiloucas
Abstract
A bond graph Input-State-Output Port-Hamiltonian formulation of memristive networks for Josephson junction circuits in state space is presented. The methodology has applications to the modeling of SQUIDs and other non-linear transducers and enables the formulation of input-output models of complex components embedded in non-linear networks.
Citation
- Journal: Journal of Physics: Conference Series
- Year: 2019
- Volume: 1322
- Issue: 1
- Pages: 012040
- Publisher: IOP Publishing
- DOI: 10.1088/1742-6596/1322/1/012040
BibTeX
@article{Al_Mashhadani_2019,
title={{Bond-Graph Input-State-Output Port-Hamiltonian Formulation of Memristive Networks for emulation of Josephson Junction Circuits}},
volume={1322},
ISSN={1742-6596},
DOI={10.1088/1742-6596/1322/1/012040},
number={1},
journal={Journal of Physics: Conference Series},
publisher={IOP Publishing},
author={Al-Mashhadani, Israa Badr Nasser and Hadjiloucas, Sillas},
year={2019},
pages={012040}
}
References
- Paynter, (1961)
- Oster, G. F. & Auslander, D. M. The Memristor: A New Bond Graph Element. Journal of Dynamic Systems, Measurement, and Control vol. 94 249–252 (1972) – 10.1115/1.3426595
- Chua, L. Memristor-The missing circuit element. IEEE Transactions on Circuit Theory vol. 18 507–519 (1971) – 10.1109/tct.1971.1083337
- Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature vol. 453 80–83 (2008) – 10.1038/nature06932
- Al-Mashhadani, Port hamiltonian formulation of a memristive switch circuit represented in bond graph. (2017)
- Van der Schaft, Port-controlled Hamiltonian systems: towards a theory for control and design of nonlinear physical systems. J. Soc. Instrum. Control Eng. Japan (SICE) (2000)
- van der Schaft, (2014)
- Jeltsema, D. & Doria-Cerezo, A. Port-Hamiltonian Formulation of Systems With Memory. Proceedings of the IEEE vol. 100 1928–1937 (2012) – 10.1109/jproc.2011.2164169
- Jeltsema, D. & van der Schaft, A. J. Memristive port-Hamiltonian Systems. Mathematical and Computer Modelling of Dynamical Systems vol. 16 75–93 (2010) – 10.1080/13873951003690824
- Borutzky, (2009)
- Gonzalez Avalos, G. & Galindo Orozco, R. A procedure to linearize a class of non-linear systems modelled by bond graphs. Mathematical and Computer Modelling of Dynamical Systems vol. 21 38–57 (2014) – 10.1080/13873954.2013.874360
- Golo, (2003)
- Donaire, A. & Junco, S. Derivation of Input-State-Output Port-Hamiltonian Systems from bond graphs. Simulation Modelling Practice and Theory vol. 17 137–151 (2009) – 10.1016/j.simpat.2008.02.007
- Josephson, B. D. Possible new effects in superconductive tunnelling. Physics Letters vol. 1 251–253 (1962) – 10.1016/0031-9163(62)91369-0
- Lenz, J. & Edelstein, S. Magnetic sensors and their applications. IEEE Sensors Journal vol. 6 631–649 (2006) – 10.1109/jsen.2006.874493
- Drung, D. . et al. Highly Sensitive and Easy-to-Use SQUID Sensors. IEEE Transactions on Applied Superconductivity vol. 17 699–704 (2007) – 10.1109/tasc.2007.897403
- Chua, L. O. Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proceedings of the IEEE vol. 9 1830–1859 (2003) – 10.1109/jproc.2003.818319
- Ling Hao, Gallop, J., Purnell, A., Cohen, L. & Thiess, S. Non-linear microwave response of HTS thin films: a comparison of intermodulation and conventional measurements. IEEE Transactions on Appiled Superconductivity vol. 11 3411–3414 (2001) – 10.1109/77.919795
- Gallop, J. C., Langham, C. D., Ling Hao & Abbas, F. Dielectric loaded HTS resonators as frequency standards and low-phase noise oscillators. IEEE Transactions on Instrumentation and Measurement vol. 46 122–125 (1997) – 10.1109/19.571789
- Hao, L., Gallop, J. & Macfarlane, J. Applications of Superconductivity for Implementation of Phase Conjugation in the Microwave Region. Journal of Superconductivity and Novel Magnetism vol. 19 591–598 (2007) – 10.1007/s10948-006-0206-3
- Romans, E. J. et al. Noise Performance of Niobium Nano-SQUIDs in Applied Magnetic Fields. IEEE Transactions on Applied Superconductivity vol. 21 404–407 (2011) – 10.1109/tasc.2010.2090851
- Hao, L. et al. Inductive sensor based on nano-scale SQUIDs. IEEE Transactions on Applied Superconductivity vol. 15 514–517 (2005) – 10.1109/tasc.2005.849892
- Lee, R. A. M. et al. Quantum Roulette Noise Thermometer: Progress and prospects. IEEE Transactions on Appiled Superconductivity vol. 11 859–862 (2001) – 10.1109/77.919480
- Gallop, J., Cox, D. & Hao, L. Nanobridge SQUIDs as calorimetric inductive particle detectors. Superconductor Science and Technology vol. 28 084002 (2015) – 10.1088/0953-2048/28/8/084002
- Watson, A. Measurement and the Single Particle. Science vol. 306 1308–1309 (2004) – 10.1126/science.306.5700.1308
- Hao, L. et al. Inductive superconducting transition-edge detector for single-photon and macro-molecule detection. Superconductor Science and Technology vol. 16 1479–1482 (2003) – 10.1088/0953-2048/16/12/035
- Hao, L. Quantum Detection Applications of NanoSQUIDs fabricated by Focussed Ion Beam. Journal of Physics: Conference Series vol. 286 012013 (2011) – 10.1088/1742-6596/286/1/012013
- Hao, L. et al. Coupled NanoSQUIDs and Nano-Electromechanical Systems (NEMS) Resonators. IEEE Transactions on Applied Superconductivity vol. 23 1800304–1800304 (2013) – 10.1109/tasc.2012.2233536
- Bechstein, S. et al. Design and Fabrication of Coupled NanoSQUIDs and NEMS. IEEE Transactions on Applied Superconductivity vol. 25 1–4 (2015) – 10.1109/tasc.2014.2371696
- Hao, L., Gallop, J. C., Cox, D. C. & Chen, J. Fabrication and Analogue Applications of NanoSQUIDs Using Dayem Bridge Junctions. IEEE Journal of Selected Topics in Quantum Electronics vol. 21 1–8 (2015) – 10.1109/jstqe.2014.2354634
- Al-Mashhadani, Linearized Bond Graph of Hodgkin-Huxley Memristor Neuron Model. (2016)