Authors

Ryo Arai, Satoru Sakai, Akihiro Tatsuoka, Qin Zhang

Abstract

This paper discusses energy behaviors in hydraulic cylinder dynamics, which are important for model-based control of agriculture scale excavators. First, we review hydraulic cylinder dynamics and update our physical parameter identification method to agriculture scale experimental excavators in order to construct a nominal numerical simulator. Second, we analyze the energy behaviors from the port-Hamiltonian point of view which provides many links to model-based control at laboratory scale at least. At agriculture scale, even though the nominal numerical simulator is much simpler than an experimental excavator, the analytical, experimental, and numerical energy behaviors are very close to each other. This implies that the port-Hamiltonian point of view will be applicable in agriculture scale against modeling errors.

Citation

  • Journal: Energies
  • Year: 2021
  • Volume: 14
  • Issue: 19
  • Pages: 6210
  • Publisher: MDPI AG
  • DOI: 10.3390/en14196210

BibTeX

@article{Arai_2021,
  title={{Analytical, Experimental, and Numerical Investigation of Energy in Hydraulic Cylinder Dynamics of Agriculture Scale Excavators}},
  volume={14},
  ISSN={1996-1073},
  DOI={10.3390/en14196210},
  number={19},
  journal={Energies},
  publisher={MDPI AG},
  author={Arai, Ryo and Sakai, Satoru and Tatsuoka, Akihiro and Zhang, Qin},
  year={2021},
  pages={6210}
}

Download the bib file

References

  • Zhang, Q. & Zhang, Q. Basics of Hydraulic Systems. (CRC Press, 2008). doi:10.1201/9781420071023 – 10.1201/9781420071023
  • Huang, Y. & Zhang, Q. Agricultural Cybernetics. Agriculture Automation and Control (Springer International Publishing, 2021). doi:10.1007/978-3-030-72102-2 – 10.1007/978-3-030-72102-2
  • Sakai, S., Iida, M., Osuka, K. & Umeda, M. Design and control of a heavy material handling manipulator for agricultural robots. Autonomous Robots vol. 25 189–204 (2008) – 10.1007/s10514-008-9090-y
  • Mattila, J., Koivumaki, J., Caldwell, D. G. & Semini, C. A Survey on Control of Hydraulic Robotic Manipulators With Projection to Future Trends. IEEE/ASME Transactions on Mechatronics vol. 22 669–680 (2017) – 10.1109/tmech.2017.2668604
  • Raibert, M., Blankespoor, K., Nelson, G. & Playter, R. BigDog, the Rough-Terrain Quadruped Robot. IFAC Proceedings Volumes vol. 41 10822–10825 (2008) – 10.3182/20080706-5-kr-1001.01833
  • Watton, J. FURTHER DEVELOPMENTS ON THE CLOSED-LOOP RESPONSE DESIGN OF SELF-TUNING ELECTROHYDRAULIC CONTROL SYSTEMS. Proceedings of the JFPS International Symposium on Fluid Power vol. 1989 443–447 (1989) – 10.5739/isfp.1989.443
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Kugi, A. & Kemmetmüller, W. New Energy-based Nonlinear Controller for Hydraulic Piston Actuators. European Journal of Control vol. 10 163–173 (2004)10.3166/ejc.10.163-173
  • Nurmi, J. & Mattila, J. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator. Energies vol. 10 647 (2017) – 10.3390/en10050647
  • Vukovic, M., Leifeld, R. & Murrenhoff, H. Reducing Fuel Consumption in Hydraulic Excavators—A Comprehensive Analysis. Energies vol. 10 687 (2017) – 10.3390/en10050687
  • Lu, L. & Yao, B. Energy-Saving Adaptive Robust Control of a Hydraulic Manipulator Using Five Cartridge Valves With an Accumulator. IEEE Transactions on Industrial Electronics vol. 61 7046–7054 (2014) – 10.1109/tie.2014.2314054
  • Abdel-Baqi, O., Miller, P. & Nasiri, A. Energy management for an 8000HP hybrid hydraulic mining shovel. 2015 IEEE Transportation Electrification Conference and Expo (ITEC) 1–8 (2015) doi:10.1109/itec.2015.7167527 – 10.1109/itec.2015.7167527
  • Sakai, S. & Stramigioli, S. Visualization of Hydraulic Cylinder Dynamics by a Structure Preserving Nondimensionalization. IEEE/ASME Transactions on Mechatronics vol. 23 2196–2206 (2018) – 10.1109/tmech.2018.2854751
  • Morselli, R., Zanasi, R. & Ferracin, P. Dynamic model of an electro-hydraulic three point hitch. 2006 American Control Conference 6 pp. (2006) doi:10.1109/acc.2006.1656492 – 10.1109/acc.2006.1656492
  • Maeshima, A Base Parameter Identification Method and Model Validation for Hydraulic Arms. J. JFPS (2012)
  • Saleem, A. & Kim, M.-H. CFD Analysis on the Air-Side Thermal-Hydraulic Performance of Multi-Louvered Fin Heat Exchangers at Low Reynolds Numbers. (2017) doi:10.20944/preprints201705.0101.v1 – 10.20944/preprints201705.0101.v1
  • Castilla, R. et al. Pressure-Drop Coefficients for Cushioning System of Hydraulic Cylinder With Grooved Piston: A Computational Fluid Dynamic Simulation. Energies vol. 10 1704 (2017) – 10.3390/en10111704
  • Zardin, B., Cillo, G., Borghi, M., D’Adamo, A. & Fontanesi, S. Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds. Energies vol. 10 788 (2017) – 10.3390/en10060788
  • Li, Y. & Wang, Q. Pump-Pressure-Compensation-Based Adaptive Neural Torque Control of a Hydraulic Excavator with Open Center Valves. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 610–615 (2018) doi:10.1109/aim.2018.8452274 – 10.1109/aim.2018.8452274
  • Sakai, S., Osuka, K., Maekawa, T. & Umeda, M. Robust Control Systems of a Heavy Material Handling Agricultural Robot: A Case Study for Initial Cost Problem. IEEE Transactions on Control Systems Technology vol. 15 1038–1048 (2007) – 10.1109/tcst.2007.899710
  • Ljung, L. System Identification. Wiley Encyclopedia of Electrical and Electronics Engineering (1999) doi:10.1002/047134608x.w1046 – 10.1002/047134608x.w1046
  • Sakai, S. A direct teaching control via Casimir of force sensorless hydraulic arms. 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 211–216 (2019) doi:10.1109/aim.2019.8868332 – 10.1109/aim.2019.8868332
  • Richard, E. & Vivalda, J. C. Mathematical Analysis of Stability and Drift Behavior of Hydraulic Cylinders Driven by a Servovalve. Journal of Dynamic Systems, Measurement, and Control vol. 124 206–213 (2001) – 10.1115/1.1433482