Alternative Passive Maps for Infinite-Dimensional Systems Using Mixed-Potential Functions
Authors
Krishna Chaitanya Kosaraju, Ramkrishna Pasumarthy, Dimitri Jeltsema
Abstract
This paper aims at developing a Brayton-Moser analogue of an infinite-dimensional system in the port-Hamiltonian framework, defined with respect to a Stokes-Dirac structure. It is shown that such a formulation leads to defining alternative passive maps, which differ from those in the port-Hamiltonian framework via a “power-like” function called the mixed-potential function. This mixed-potential function can also be used for stability analysis. We present our results for a general port-Hamiltonian system, with Maxwell’s equations and the transmission line, with nonzero boundary conditions, as examples.
Keywords
Distributed-parameter systems; infinite-dimensional systems; Brayton-Moser equations; gradient systems; passivity; port-Hamiltonian systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 1–6
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.205
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Chaitanya_Kosaraju_2015,
title={{Alternative Passive Maps for Infinite-Dimensional Systems Using Mixed-Potential Functions}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.205},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Chaitanya Kosaraju, Krishna and Pasumarthy, Ramkrishna and Jeltsema, Dimitri},
year={2015},
pages={1--6}
}
References
- Abraham, R., Marsden, J. E. & Ratiu, T. Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences (Springer New York, 1988). doi:10.1007/978-1-4612-1029-0 – 10.1007/978-1-4612-1029-0
- Brayton, R. K. & Miranker, W. L. A stability theory for nonlinear mixed initial boundary value problems. Archive for Rational Mechanics and Analysis vol. 17 358–376 (1964) – 10.1007/bf00250472
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. II. Quarterly of Applied Mathematics vol. 22 81–104 (1964) – 10.1090/qam/169747
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 50 1174–1179 (2003) – 10.1109/tcsi.2003.816332
- Jeltsema, D. and Scherpen, J.M.A. (2009). Multidomain modeling of nonlinear networks and systems. IEEE Control System Magazine.
- Jeltsema, D. & Schaft, A. van der. Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields. Journal of Physics A: Mathematical and Theoretical vol. 40 11627–11643 (2007) – 10.1088/1751-8113/40/38/013
- Pasumarthy, R. and Kosaraju, K.C. (2015). Power based methods for infinite-dimensional systems. In M.K. Camlibel, A.A. Julius, R. Pasumarthy, and J.M.A. Scherpen (eds.), Mathematical Control theory I: Nonlinear and Hybrid Control systems. Springer, In Press.
- Pasumarthy, R., Kosaraju, K.C., and Chandrasekar, A. (2014). On power balancing and stabilization for a class of infinite-dimensional systems. Proc. Mathematical Theory of Networks and Systems.
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3