Air Supply Control for PEM Fuel Cells Under Hamiltonian Framework: A Segmentation Approach
Authors
Lalitesh Kumar, Jian Chen, Xinyu Li, Zhongliang Li
Abstract
In this paper, a novel multi-input multi-output nonlinear model of proton exchange membrane fuel cells air supply subsystem under port-Hamiltonian framework is proposed-based on the segmentation of the cathode flow channel. The model consists of inlet valve, cathode flow channel, and back pressure valve to regulate the air supply. In this model, the valve openings are regarded to be inputs to the air-supply subsystem, and the valve orifices are modeled as a linear approximation from the characteristics curves of the solenoid valves. In addition, the developed model’s energy balance, dissipativity, and passivity properties are proved and discussed in details in this work. Furthermore, a passivity-based control action is designed to track the desired pressures trajectories in port-Hamiltonian framework with explicit stability analysis. Finally, the designed control action can minimize the tracking error of distributed pressures in the segments and also prove the effectiveness of the proposed model, as depicted with simulation results.
Citation
- Journal: 2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA)
- Year: 2024
- Volume:
- Issue:
- Pages: 337–342
- Publisher: IEEE
- DOI: 10.1109/fasta61401.2024.10595156
BibTeX
@inproceedings{Kumar_2024,
title={{Air Supply Control for PEM Fuel Cells Under Hamiltonian Framework: A Segmentation Approach}},
DOI={10.1109/fasta61401.2024.10595156},
booktitle={{2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA)}},
publisher={IEEE},
author={Kumar, Lalitesh and Chen, Jian and Li, Xinyu and Li, Zhongliang},
year={2024},
pages={337--342}
}
References
- Mazloomi, K. & Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews vol. 16 3024–3033 (2012) – 10.1016/j.rser.2012.02.028
- Sharma, S. & Ghoshal, S. K. Hydrogen the future transportation fuel: From production to applications. Renewable and Sustainable Energy Reviews vol. 43 1151–1158 (2015) – 10.1016/j.rser.2014.11.093
- Haddad, A. G., Boiko, I. & Al-Durra, A. Air-flow control in fuel cells using delay-based load governor and feedforward augmented dynamic inversion. ISA Transactions vol. 128 477–487 (2022) – 10.1016/j.isatra.2021.10.003
- Alaswad, A., Palumbo, A., Dassisti, M. & Olabi, A. G. Fuel Cell Technologies, Applications, and State of the Art. A Reference Guide. Reference Module in Materials Science and Materials Engineering (2016) doi:10.1016/b978-0-12-803581-8.04009-1 – 10.1016/b978-0-12-803581-8.04009-1
- Pukrushpan, J. T., Stefanopoulou, A. G. & Huei Peng. Modeling and control for PEM fuel cell stack system. Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301) 3117–3122 vol.4 (2002) doi:10.1109/acc.2002.1025268 – 10.1109/acc.2002.1025268
- Zhao, D., Xia, L., Dang, H., Wu, Z. & Li, H. Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy. Energy Conversion and Management vol. 253 115159 (2022) – 10.1016/j.enconman.2021.115159
- Matraji, I., Laghrouche, S., Jemei, S. & Wack, M. Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Applied Energy vol. 104 945–957 (2013) – 10.1016/j.apenergy.2012.12.012
- Li, M. et al. Air flow rate and pressure control approach for the air supply subsystems in PEMFCs. ISA Transactions vol. 128 624–634 (2022) – 10.1016/j.isatra.2021.08.046
- Chen, J., Liu, Z., Wang, F., Ouyang, Q. & Su, H. Optimal Oxygen Excess Ratio Control for PEM Fuel Cells. IEEE Transactions on Control Systems Technology vol. 26 1711–1721 (2018) – 10.1109/tcst.2017.2723343
- Yin, X. et al. Cooperative control of air and fuel feeding for PEM fuel cell with ejector-driven recirculation. Applied Thermal Engineering vol. 199 117590 (2021) – 10.1016/j.applthermaleng.2021.117590
- Liu, Y. et al. Performance degradation of a proton exchange membrane fuel cell with dual ejector-based recirculation. Energy Conversion and Management: X vol. 12 100114 (2021) – 10.1016/j.ecmx.2021.100114
- Lin, W. & Byrnes, C. I. Passivity and absolute stabilization of a class of discrete-time nonlinear systems. Automatica vol. 31 263–267 (1995) – 10.1016/0005-1098(94)00075-t
- Lin, W. Feedback stabilization of general nonlinear control systems: A passive system approach. Systems & Control Letters vol. 25 41–52 (1995) – 10.1016/0167-6911(94)00056-2
- Lin, W. Global asymptotic stabilization of general nonlinear systems with stable free dynamics via passivity and bounded feedback. Automatica vol. 32 915–924 (1996) – 10.1016/0005-1098(96)00013-1
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Wu, C., van der Schaft, A. & Chen, J. Robust trajectory tracking for incrementally passive nonlinear systems. Automatica vol. 107 595–599 (2019) – 10.1016/j.automatica.2019.05.065
- Wu, C., van der Schaft, A. & Chen, J. Stabilization of Port-Hamiltonian Systems Based on Shifted Passivity via Feedback. IEEE Transactions on Automatic Control vol. 66 2219–2226 (2021) – 10.1109/tac.2020.3005156
- Kumar, L., Chen, J., Wu, C., Chen, Y. & van der Schaft, A. A segmented model based fuel delivery control of PEM fuel cells: A port-Hamiltonian approach. Automatica vol. 168 111814 (2024) – 10.1016/j.automatica.2024.111814
- Chen, J., Huang, L., Yan, C. & Liu, Z. A dynamic scalable segmented model of PEM fuel cell systems with two-phase water flow. Mathematics and Computers in Simulation vol. 167 48–64 (2020) – 10.1016/j.matcom.2018.05.006
- Chen, Y.-S. & Peng, H. A segmented model for studying water transport in a PEMFC. Journal of Power Sources vol. 185 1179–1192 (2008) – 10.1016/j.jpowsour.2008.07.018
- Chen, Y.-S. & Peng, H. Predicting current density distribution of proton exchange membrane fuel cells with different flow field designs. Journal of Power Sources vol. 196 1992–2004 (2011) – 10.1016/j.jpowsour.2010.09.094
- Liu, X., Chen, J., Jin, L. & Liu, S. Sensitivity analysis of current distribution to critical operating parameters for polymer electrolyte membrane fuel cells. Journal of Power Sources vol. 573 233068 (2023) – 10.1016/j.jpowsour.2023.233068
- Burkert, Standard — eu — en burkert fluid control system: Electromotive 2-way globe proportional valve. Christian Burkert GmbH & Co. KG (2023)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3