Adaptive Trajectory Tracking for a Planar Two-Wheeled Vehicle with Positive Trail
Authors
Abstract
This paper proposes an adaptive trajectory tracking control for an autonomous planar two-wheeled vehicle subject to nonholonomic constraints. Furthermore, the vehicle model considers a so-called positive trail that provides self-alignment of the steering in many vehicle types, including bicycles. The dynamics of the system is described in a port-Hamiltonian form that is suitable for systematic synthesis of passivity-based controllers. This also enables an explicit description of the system dynamics including the nonholonomic constraints by an ODE. By a generalized canonical transformation, an error system is determined preserving the port-Hamiltonian structure. This reduces the tracking problem to a stabilization problem that is solved by a further transformation. The controller is designed for a structure preserving simplified model and applied to the original model handling the omitted effects due to the simplification as disturbance. Finally, an adaptive controller is applied that, in the port-Hamiltonian framework, guarantees the asymptotic tracking of a given trajectory despite large parameter uncertainties.
Citation
- Journal: 2018 IEEE Conference on Control Technology and Applications (CCTA)
- Year: 2018
- Volume:
- Issue:
- Pages: 1222–1227
- Publisher: IEEE
- DOI: 10.1109/ccta.2018.8511396
BibTeX
@inproceedings{Turnwald_2018,
title={{Adaptive Trajectory Tracking for a Planar Two-Wheeled Vehicle with Positive Trail}},
DOI={10.1109/ccta.2018.8511396},
booktitle={{2018 IEEE Conference on Control Technology and Applications (CCTA)}},
publisher={IEEE},
author={Turnwald, Alen and Liu, Steven},
year={2018},
pages={1222--1227}
}
References
- d’andréa-nevel, Some remarks on wheeled autonomous vehicles and the evolution of their control design.. IFAC-PapersOnLine (2016)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Turnwald, A. & Oehlschlägel, T. Passivity-Based Control of a Cryogenic Upper Stage to Minimize Fuel Sloshing. Journal of Guidance, Control, and Dynamics 40, 3012–3019 (2017) – 10.2514/1.g001591
- Sarras, I., Acosta, J. Á., Ortega, R. & Mahindrakar, A. D. Constructive immersion and invariance stabilization for a class of underactuated mechanical systems. Automatica 49, 1442–1448 (2013) – 10.1016/j.automatica.2013.01.059
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 57, 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Fujimoto, K. & Taniguchi, M. Passive path following control for port-Hamiltonian systems. 2008 47th IEEE Conference on Decision and Control 1285–1290 (2008) doi:10.1109/cdc.2008.4739242 – 10.1109/cdc.2008.4739242
- (2017)
- Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. 25, 26–47 (2005) – 10.1109/mcs.2005.1499389
- Paden, B., Cap, M., Yong, S. Z., Yershov, D. & Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intell. Veh. 1, 33–55 (2016) – 10.1109/tiv.2016.2578706
- turnwald, 9th Vienna International Conference on Mathematical Modelling (MATHMOD2018) (2018)
- Bascetta, L., Cucci, D. A. & Matteucci, M. Kinematic trajectory tracking controller for an all-terrain Ackermann steering vehicle. IFAC-PapersOnLine 49, 13–18 (2016) – 10.1016/j.ifacol.2016.07.600
- Taniguchi, T., Eciolaza, L. & Sugeno, M. Model Following Control of a Unicycle Mobile Robot via Dynamic Feedback Linearization Based on Piecewise Bilinear Models. Communications in Computer and Information Science 539–548 (2014) doi:10.1007/978-3-319-08852-5_55 – 10.1007/978-3-319-08852-5_55
- Fukao, T., Nakagawa, H. & Adachi, N. Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Automat. 16, 609–615 (2000) – 10.1109/70.880812
- hamerlain, Trajectory tracking of a car-like robot using second order sliding mode control (2007)
- Schwab, A. L. & Meijaard, J. P. A review on bicycle dynamics and rider control. Vehicle System Dynamics 51, 1059–1090 (2013) – 10.1080/00423114.2013.793365
- Morton, C., Pickert, V. & Armstrong, M. Self-Alignment Torque as a Source of Energy Recovery for Hybrid Electric Trucks. IEEE Trans. Veh. Technol. 63, 62–71 (2014) – 10.1109/tvt.2013.2271049
- kelly, An introduction to trajectory optimization: how to do your own direct collocation. submitted to SIAM Review (2016)
- Nonholonomic Mechanics and Control Interdisciplinary Applied Mathematics (2015)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control 10, 421–431 (2004) – 10.3166/ejc.10.421-431
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- fujimoto, On trajectory tracking control of port-Hamiltonian systems with quaternions Kenji Fujimoto and Taishi Nishiyama (Kyoto University) (2014)
- getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics (1995)