Adaptive IDA-PBC Applied to On-Board Boost Converter Supplying a Constant Power Load
Authors
W. Gil-Gonzalez, Oscar Montoya, A. Herrera-Orozco, Federico Serra
Abstract
This paper addresses the problem of output voltage regulation of a boost dc-dc converter supplying an unknown constant power load (CPL). An interconnection and damping assignment passivity-based control (IDA-PBC) approach is employed to design the closed-loop controller taking advantage of the port-Hamiltonian structure of the converter under average modeling. An adaptive online method to estimate the CPL consumption is made by guaranteeing asymptotic stability in Lyapunov’s sense for closed-loop operation. Numerical validation between a nonlinear controller based on a sliding theory and the proposed IDA-PBC approach demonstrates the effectiveness and robustness of the passivity-based methods for regulating voltage profiles in boost converters, including large-scale variations in the CPL. All the numerical validations are conducted in MATLAB/Simulink software.
Citation
- Journal: 2020 IEEE ANDESCON
- Year: 2020
- Volume:
- Issue:
- Pages: 1–5
- Publisher: IEEE
- DOI: 10.1109/andescon50619.2020.9272078
BibTeX
@inproceedings{Gil_Gonzalez_2020,
title={{Adaptive IDA-PBC Applied to On-Board Boost Converter Supplying a Constant Power Load}},
DOI={10.1109/andescon50619.2020.9272078},
booktitle={{2020 IEEE ANDESCON}},
publisher={IEEE},
author={Gil-Gonzalez, W. and Montoya, Oscar and Herrera-Orozco, A. and Serra, Federico},
year={2020},
pages={1--5}
}
References
- dave, Analysis of boost converter using PI control algorithms. International Journal of Engineering Trends and Technology (2012)
- Rahimi, A. M., Williamson, G. A. & Emadi, A. Loop-Cancellation Technique: A Novel Nonlinear Feedback to Overcome the Destabilizing Effect of Constant-Power Loads. IEEE Trans. Veh. Technol. 59, 650–661 (2010) – 10.1109/tvt.2009.2037429
- Martínez-Treviño, B. A., Jammes, R., Aroudi, A. E. & Martínez-Salamero, L. Sliding-mode control of a boost converter supplying a constant power load. IFAC-PapersOnLine 50, 7807–7812 (2017) – 10.1016/j.ifacol.2017.08.1055
- Cespedes, M., Xing, L. & Sun, J. Constant-Power Load System Stabilization by Passive Damping. IEEE Trans. Power Electron. 26, 1832–1836 (2011) – 10.1109/tpel.2011.2151880
- Khaligh, A., Rahimi, A. m. & Emadi, A. Modified Pulse-Adjustment Technique to Control DC/DC Converters Driving Variable Constant-Power Loads. IEEE Trans. Ind. Electron. 55, 1133–1146 (2008) – 10.1109/tie.2007.909757
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- astolfi, Nonlinear and Adaptive Control with Applications (2007)
- Gil-Gonzalez, W., Garces, A. & Montoya, O. D. Current PI Control for PV Systems in DC Microgrids: A PBC Design. 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) 1–5 (2019) doi:10.1109/pepqa.2019.8851555 – 10.1109/pepqa.2019.8851555
- Huangfu, Y. et al. Stability Analysis and Active Stabilization of On-board DC Power Converter System with Input Filter. IEEE Trans. Ind. Electron. 65, 790–799 (2018) – 10.1109/tie.2017.2703663
- Buticchi, G., Costa, L. & Liserre, M. Improving System Efficiency for the More Electric Aircraft: A Look at dc\/dc Converters for the Avionic Onboard dc Microgrid. EEE Ind. Electron. Mag. 11, 26–36 (2017) – 10.1109/mie.2017.2723911
- Montoya, O. D., Campillo, J. E., Gil-Gonzalez, W. & Garces, A. Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: a PBC Approach. 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) 1–6 (2018) doi:10.1109/epim.2018.8756428 – 10.1109/epim.2018.8756428
- Zadeh, M. K. et al. Discrete-Time Modeling, Stability Analysis, and Active Stabilization of DC Distribution Systems With Multiple Constant Power Loads. IEEE Trans. on Ind. Applicat. 52, 4888–4898 (2016) – 10.1109/tia.2016.2594040
- Pang, S. et al. Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load. IEEE Trans. on Ind. Applicat. 55, 6476–6485 (2019) – 10.1109/tia.2019.2938149
- Jia, Y. & Rajashekara, K. An Induction Generator-Based AC/DC Hybrid Electric Power Generation System for More Electric Aircraft. IEEE Trans. on Ind. Applicat. 53, 2485–2494 (2017) – 10.1109/tia.2017.2650862
- Chen, J., Zhang, X. & Wen, C. Harmonics Attenuation and Power Factor Correction of a More Electric Aircraft Power Grid Using Active Power Filter. IEEE Trans. Ind. Electron. 63, 7310–7319 (2016) – 10.1109/tie.2016.2590990
- Hussain, M. N., Mishra, R. & Agarwal, V. A Frequency-Dependent Virtual Impedance for Voltage-Regulating Converters Feeding Constant Power Loads in a DC Microgrid. IEEE Trans. on Ind. Applicat. 54, 5630–5639 (2018) – 10.1109/tia.2018.2846637