A unified port-Hamiltonian approach for modelling and stabilizing control of engineering systems
Authors
Ha Ngoc Hoang, Quyen Phuong Le, Chi Thuan Nguyen
Abstract
This work deals with systems whose dynamics are affine in the control input. Such dynamics are considered to be significantly differentially expressed in a canonical form, namely the quadratic (pseudo) port-Hamiltonian representation, in order to explore further some structural properties usable for the tracking-error passivity-based control design. Different kinds of linear and nonlinear engineering systems including an open isothermal homogeneous system and a continuous biochemical fermenter are used to illustrate the approach.
Citation
- Journal: Vietnam Journal of Science and Technology
- Year: 2021
- Volume: 59
- Issue: 1
- Pages: 96–109
- Publisher: Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)
- DOI: 10.15625/2525-2518/59/1/15238
BibTeX
@article{Hoang_2021,
title={{A unified port-Hamiltonian approach for modelling and stabilizing control of engineering systems}},
volume={59},
ISSN={2525-2518},
DOI={10.15625/2525-2518/59/1/15238},
number={1},
journal={Vietnam Journal of Science and Technology},
publisher={Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)},
author={Hoang, Ha Ngoc and Le, Quyen Phuong and Nguyen, Chi Thuan},
year={2021},
pages={96--109}
}
References
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Introduction. Communications and Control Engineering 1–13 (1998) doi:10.1007/978-1-4471-3603-3_1 – 10.1007/978-1-4471-3603-3_1
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica 46, 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems 12, 159–174 (2006) – 10.1080/13873950500068823
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Monshizadeh, N., Monshizadeh, P., Ortega, R. & van der Schaft, A. Conditions on shifted passivity of port-Hamiltonian systems. Systems & Control Letters 123, 55–61 (2019) – 10.1016/j.sysconle.2018.10.010
- Chidambaram, M. & Reddy, G. P. Nonlinear control of systems with input and output multiplicities. Computers & Chemical Engineering 20, 295–299 (1996) – 10.1016/0098-1354(95)00019-4
- Guay, M. & Hudon, N. Stabilization of Nonlinear Systems via Potential-Based Realization. IEEE Trans. Automat. Contr. 61, 1075–1080 (2016) – 10.1109/tac.2015.2455671
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters 60, 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Hoang, N. H., Dochain, D., Couenne, F. & Le Gorrec, Y. Dissipative pseudo-Hamiltonian realization of chemical systems using irreversible thermodynamics. Mathematical and Computer Modelling of Dynamical Systems 23, 135–155 (2016) – 10.1080/13873954.2016.1237973
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Nguyen, T. S., Hoang, N. H. & Azlan Hussain, M. Feedback passivation plus tracking-error-based multivariable control for a class of free-radical polymerisation reactors. International Journal of Control 92, 1970–1984 (2018) – 10.1080/00207179.2017.1423393
- McCall, M. W. Classical Mechanics. (2010) doi:10.1002/9780470972502 – 10.1002/9780470972502
- P. Niemiec, M. & Kravaris, C. Nonlinear model-state feedback control for nonminimum-phase processes. Automatica 39, 1295–1302 (2003) – 10.1016/s0005-1098(03)00103-1
- Antonelli, R. & Astolfi, A. Continuous stirred tank reactors: easy to stabilise? Automatica 39, 1817–1827 (2003) – 10.1016/s0005-1098(03)00177-8
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Farschman, C. A., Viswanath, K. P. & Erik Ydstie, B. Process systems and inventory control. AIChE Journal 44, 1841–1857 (1998) – 10.1002/aic.690440814