A Port-Hamiltonian Perspective on Dual Active Bridge Converters: Modeling, Analysis, and Experimental Validation
Authors
Yaoqiang Wang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen, Fujin Deng
Abstract
The operational stability and performance of dual active bridge (DAB) converters are dictated by an intricate coupling of electrical, magnetic, and thermal dynamics. Conventional modeling paradigms fail to capture these interactions, creating a critical gap between design predictions and real performance. A unified Port-Hamiltonian model (PHM) is developed, embedding nonlinear, temperature-dependent material physics within a single, energy-conserving structure. Derived from first principles and experimentally validated, the model reproduces high-frequency dynamics, including saturation-driven current spikes, with superior fidelity. The energy-based structure systematically exposes the converter’s stability boundaries, revealing not only thermal runaway limits but also previously obscured electro-thermal oscillatory modes. The resulting framework provides a rigorous foundation for the predictive co-design of magnetics, thermal management, and control, enabling guaranteed stability and optimized performance across the full operational envelope.
Citation
- Journal: Energies
- Year: 2025
- Volume: 18
- Issue: 19
- Pages: 5197
- Publisher: MDPI AG
- DOI: 10.3390/en18195197
BibTeX
@article{Wang_2025,
title={{A Port-Hamiltonian Perspective on Dual Active Bridge Converters: Modeling, Analysis, and Experimental Validation}},
volume={18},
ISSN={1996-1073},
DOI={10.3390/en18195197},
number={19},
journal={Energies},
publisher={MDPI AG},
author={Wang, Yaoqiang and Sun, Zhaolong and Li, Peiyuan and Ai, Jian and Wu, Chan and Shen, Zhan and Deng, Fujin},
year={2025},
pages={5197}
}
References
- Krismer, F. & Kolar, J. W. Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications. IEEE Trans. Ind. Electron. 59, 2745–2760 (2012) – 10.1109/tie.2011.2112312
- Polat, H. et al. A Review of DC Fast Chargers with BESS for Electric Vehicles: Topology, Battery, Reliability Oriented Control and Cooling Perspectives. Batteries 9, 121 (2023) – 10.3390/batteries9020121
- Muhammetoglu, B. & Jamil, M. Dual Active Bridge Converter with Interleaved and Parallel Operation for Electric Vehicle Charging. Energies 17, 4258 (2024) – 10.3390/en17174258
- Huang, A. Q., Crow, M. L., Heydt, G. T., Zheng, J. P. & Dale, S. J. The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet. Proc. IEEE 99, 133–148 (2011) – 10.1109/jproc.2010.2081330
- Koohi, P., Watson, A. J., Clare, J. C., Soeiro, T. B. & Wheeler, P. W. A Survey on Multi-Active Bridge DC-DC Converters: Power Flow Decoupling Techniques, Applications, and Challenges. Energies 16, 5927 (2023) – 10.3390/en16165927
- Wang, P., Chen, X., Tong, C., Jia, P. & Wen, C. Large- and Small-Signal Average-Value Modeling of Dual-Active-Bridge DC–DC Converter With Triple-Phase-Shift Control. IEEE Trans. Power Electron. 36, 9237–9250 (2021) – 10.1109/tpel.2021.3052459
- Shao, S. et al. Modeling and Advanced Control of Dual-Active-Bridge DC–DC Converters: A Review. IEEE Trans. Power Electron. 37, 1524–1547 (2022) – 10.1109/tpel.2021.3108157
- Takagi, K. & Fujita, H. Dynamic Control and Performance of a Dual-Active-Bridge DC–DC Converter. IEEE Trans. Power Electron. 33, 7858–7866 (2018) – 10.1109/tpel.2017.2773267
- Dey, P., Paul, S. & Basu, K. Analytical Closed-Form ZVS Boundaries of Triple-Phase-Shift Modulated Dual Active Bridge Converter. IEEE Trans. Power Electron. 40, 16870–16893 (2025) – 10.1109/tpel.2025.3589663
- Li, X., Wu, F., Yang, G. & Liu, H. Improved Modulation Strategy for Single-Phase Isolated Quasi-Single-Stage AC–DC Converter to Improve Current Characteristics. IEEE Trans. Power Electron. 35, 4296–4308 (2020) – 10.1109/tpel.2019.2937007
- Shen, X., Zuo, Y., Kong, J. & Martinez, W. Artificial Intelligence Applications in High-Frequency Magnetic Components Design for Power Electronics Systems: An Overview. IEEE Trans. Power Electron. 39, 8478–8496 (2024) – 10.1109/tpel.2024.3381431
- Bakri, R., Corgne, G. & Margueron, X. Thermal Modeling of Planar Magnetics: Fundamentals, Review and Key Points. IEEE Access 11, 41654–41679 (2023) – 10.1109/access.2023.3269662
- Wang, Z., Bak, C. L., Wang, H., Sørensen, H. & da Silva, F. F. Multiphysics Digital Model of the High Frequency Transformer for Power Electronics Application Considering Electro-Thermal Interactions. IEEE Trans. Power Electron. 38, 14345–14359 (2023) – 10.1109/tpel.2023.3298891
- Wang, Z., Cao, H. & Zhao, Y. Electro-Thermal Co-Design for ANPC-DAB Converter with Triple-Phase-Shift Modulation Strategy. 2024 IEEE Energy Conversion Congress and Exposition (ECCE) 300–305 (2024) doi:10.1109/ecce55643.2024.10861364 – 10.1109/ecce55643.2024.10861364
- Vellvehi, M., Jordà, X., Godignon, P., Ferrer, C. & Millán, J. Coupled electro-thermal simulation of a DC/DC converter. Microelectronics Reliability 47, 2114–2121 (2007) – 10.1016/j.microrel.2006.10.009
- Wang, Y. et al. Temperature-dependent magnetic characteristics and thermal runaway assessment in passive-cooled inductive power transfer systems. Energy 332, 137173 (2025) – 10.1016/j.energy.2025.137173
- di Bernardo, M., Garefalo, F., Glielmo, L. & Vasca, F. Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuits Syst. I 45, 133–141 (1998) – 10.1109/81.661675
- Xiao, Z., Lei, W., Gao, G., Wang, H. & Mu, W. Simplified Discrete-Time Modeling for Convenient Stability Prediction of DAB Converter in Energy Storage System. IEEE Trans. Power Electron. 39, 12636–12651 (2024) – 10.1109/tpel.2024.3404099
- Li, J., Zhao, Y., Wu, X., Zhang, Y. & Wang, J. Passivity-Based Control of Dual Active Bridge Converter in Constant Power Load Condition. Energies 15, 6685 (2022) – 10.3390/en15186685
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Liu, Z., Geng, Z., Wu, S., Hu, X. & Zhang, Z. A Passivity-Based Control of Euler–Lagrange Model for Suppressing Voltage Low-Frequency Oscillation in High-Speed Railway. IEEE Trans. Ind. Inf. 15, 5551–5560 (2019) – 10.1109/tii.2019.2903103
- Sakata, N., Fujimoto, K. & Maruta, I. Passivity-Based Sliding Mode Control for Mechanical Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 69, 5605–5612 (2024) – 10.1109/tac.2024.3371898
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Syst. Lett. 5, 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Zhang, W., Wang, W. & Wu, W. Port-Controlled Hamiltonian and Energy-Shaping Based Current Control Scheme for Grid-Connected Inverter. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society 6507–6512 (2019) doi:10.1109/iecon.2019.8927779 – 10.1109/iecon.2019.8927779