A port-Hamiltonian model of airplane longitudinal dynamics
Authors
João Erick de Mattos Fernandes, Flávio Luiz Cardoso-Ribeiro, Mauricio Andrés Varela Morales
Abstract
This paper contributes to the application of port-Hamiltonian systems (pHs) theory in the context of fixed-wing airplanes, an area challenged by the difficulty of introducing aerodynamics in this framework. Expanding on recent initiatives that applied pHs theory to fixed-wing airplane dynamics - a move that simplified thrust and aerodynamics - our study introduces a comprehensive longitudinal dynamics formulation. This approach not only clarifies these earlier models by aligning more closely with traditional airplane dynamics equations but also integrates physical parameters from an A300 airplane model. By addressing and enhancing the thrust and aerodynamic representations, our formulation achieves a more accurate depiction of airplane dynamics. This work marks a step forward in the ongoing efforts to adapt pHs theory for aerospace engineering, laying the groundwork for more effective modeling and control strategies in this field.
Keywords
Aerospace; Port-Hamiltonian systems; Vehicle dynamic; Flight dynamics
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 125–130
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.268
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{de_Mattos_Fernandes_2024,
title={{A port-Hamiltonian model of airplane longitudinal dynamics}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.268},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={de Mattos Fernandes, João Erick and Cardoso-Ribeiro, Flávio Luiz and Varela Morales, Mauricio Andrés},
year={2024},
pages={125--130}
}
References
- Brockhaus, (2011)
- BRUCE, K., KELLY, J. R. & PERSON, JR., L. NASA B737 flight test results of the Total Energy Control System. Astrodynamics Conference (1986) doi:10.2514/6.1986-2143 – 10.2514/6.1986-2143
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Duindam, (2009)
- Fahmi, J.-M. & Woolsey, C. A. Port-Hamiltonian Flight Control of a Fixed-Wing Aircraft. IEEE Transactions on Control Systems Technology vol. 30 408–415 (2022) – 10.1109/tcst.2021.3059928
- Fahmi, J.-M. W. & Woolsey, C. A. Directional Stabilization of a Fixed-Wing Aircraft Using Potential Shaping. 2018 Atmospheric Flight Mechanics Conference (2018) doi:10.2514/6.2018-3620 – 10.2514/6.2018-3620
- Fahmi, J.-M. W. & Woolsey, C. A. Cross-Track Control of Rotorcraft Using Passivity Based Techniques. AIAA Scitech 2021 Forum (2021) doi:10.2514/6.2021-1991 – 10.2514/6.2021-1991
- Federal Aviation Administration, (2011)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Hamroun, Control by interconnection and energy-shaping methods of port hamiltonian models. application to the shallow water equations. European Journal of Control (2010)
- Hamroun, Port-based modelling for open channel irrigation systems. Transactions on Fluid Mechanics (2006)
- Kelly, J. R., Person, L. H. & Bruce, K. R. Flight Testing TECS — The Total Energy Control System. SAE Technical Paper Series (1986) doi:10.4271/861803 – 10.4271/861803
- McClamroch, (2011)
- Stevens, (2016)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Warsewa, A., Böhm, M., Sawodny, O. & Tarín, C. A port-Hamiltonian approach to modeling the structural dynamics of complex systems. Applied Mathematical Modelling vol. 89 1528–1546 (2021) – 10.1016/j.apm.2020.07.038
- Wu, Y., Hu, K. & Sun, X.-M. Modeling and Control Design for Quadrotors: A Controlled Hamiltonian Systems Approach. IEEE Transactions on Vehicular Technology vol. 67 11365–11376 (2018) – 10.1109/tvt.2018.2877440
- Yüksel, (2014)