A port-Hamiltonian formulation of mechanical systems with switching contact constraints
Authors
Thomas O’Brien, Joel Ferguson, Alejandro Donaire
Abstract
No available
Citation
- Journal: 2025 European Control Conference (ECC)
- Year: 2025
- Volume:
- Issue:
- Pages: 1918–1924
- Publisher: IEEE
- DOI: 10.23919/ecc65951.2025.11187143
BibTeX
@inproceedings{O_Brien_2025,
title={{A port-Hamiltonian formulation of mechanical systems with switching contact constraints}},
DOI={10.23919/ecc65951.2025.11187143},
booktitle={{2025 European Control Conference (ECC)}},
publisher={IEEE},
author={O’Brien, Thomas and Ferguson, Joel and Donaire, Alejandro},
year={2025},
pages={1918--1924}
}References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ferguson, Robust Control of Port-Hamiltonian Systems. Ph.D. thesis (2018)
- O’Brien, T., Ferguson, J. & Donaire, A. Exponentially Stable Regulation of Mechanical Systems to a Path. IFAC-PapersOnLine 56, 6801–6806 (2023) – 10.1016/j.ifacol.2023.10.389
- Brogliato, B. Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives. Annual Reviews in Control 55, 297–337 (2023) – 10.1016/j.arcontrol.2022.12.002
- Duindam, Port-Based Modelling and Control for Efficient Bipedal Walking Robots. Ph.D. thesis (2006)
- Ascher, U. M. & Petzold, L. R. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. (1998) doi:10.1137/1.9781611971392 – 10.1137/1.9781611971392
- Todorov, E. Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in MuJoCo. 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014) doi:10.1109/icra.2014.6907751 – 10.1109/icra.2014.6907751
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- McGeer, T. Passive Dynamic Walking. The International Journal of Robotics Research 9, 62–82 (1990) – 10.1177/027836499000900206
- Goebel, R., Sanfelice, R. G. & Teel, A. R. Hybrid Dynamical Systems. (2012) doi:10.23943/princeton/9780691153896.001.0001 – 10.23943/princeton/9780691153896.001.0001
- Westervelt, E. R., Grizzle, J. W. & Koditschek, D. E. Hybrid zero dynamics of planar biped walkers. IEEE Trans. Automat. Contr. 48, 42–56 (2003) – 10.1109/tac.2002.806653
- Haddad, W. M., Nersesov, S. G. & Chellaboina, V. Energy-based control for hybrid port-controlled Hamiltonian systems. Automatica 39, 1425–1435 (2003) – 10.1016/s0005-1098(03)00113-4
- van der Schaft, A. J. & Schumacher, J. M. Complementarity modeling of hybrid systems. IEEE Trans. Automat. Contr. 43, 483–490 (1998) – 10.1109/9.664151
- Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
- Hurmuzlu, Y. & Marghitu, D. B. Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points. The International Journal of Robotics Research 13, 82–92 (1994) – 10.1177/027836499401300106
- Sadeghian, H., Ott, C., Garofalo, G. & Cheng, G. Passivity-based control of underactuated biped robots within hybrid zero dynamics approach. 2017 IEEE International Conference on Robotics and Automation (ICRA) 4096–4101 (2017) doi:10.1109/icra.2017.7989471 – 10.1109/icra.2017.7989471
- Ames, A. D., Galloway, K., Sreenath, K. & Grizzle, J. W. Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics. IEEE Trans. Automat. Contr. 59, 876–891 (2014) – 10.1109/tac.2014.2299335