A Port-Hamiltonian Droop Control for Grid-Forming Inverters
Authors
Alejandro Garcés-Ruíz, Manuel Bravo-López, Pedro Rodriguez
Abstract
Modern power systems include inverter-based resources that may reduce equivalent inertia, resulting in instability issues. A common way to add inertia is by increasing the energy storage capacity in each inverter. Although viable, this option may be expensive in practice. This article proposes a new approach to improve stability in grid-forming inverters. The conventional droop of frequency/power is equipped with additional angle feedback based on the port-Hamiltonian structure of the dynamic system. Phasor-measurement units allow this type of control. The control proofs to be asymptotically stable for a single-inverter infinite bus system. Simulation results under different fault conditions demonstrate a superior performance of the proposed control compared to a conventional droop.
Citation
- Journal: 2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe)
- Year: 2023
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.23919/epe23ecceeurope58414.2023.10264505
BibTeX
@inproceedings{Garc_s_Ru_z_2023,
title={{A Port-Hamiltonian Droop Control for Grid-Forming Inverters}},
DOI={10.23919/epe23ecceeurope58414.2023.10264505},
booktitle={{2023 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe)}},
publisher={IEEE},
author={Garcés-Ruíz, Alejandro and Bravo-López, Manuel and Rodriguez, Pedro},
year={2023},
pages={1--6}
}
References
- De La Ree, J., Centeno, V., Thorp, J. S. & Phadke, A. G. Synchronized Phasor Measurement Applications in Power Systems. IEEE Trans. Smart Grid 1, 20–27 (2010) – 10.1109/tsg.2010.2044815
- Sun, Y. et al. New Perspectives on Droop Control in AC Microgrid. IEEE Trans. Ind. Electron. 64, 5741–5745 (2017) – 10.1109/tie.2017.2677328
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Ferrero, R., Pegoraro, P. A. & Toscani, S. Proposals and Analysis of Space Vector-Based Phase-Locked-Loop Techniques for Synchrophasor, Frequency, and ROCOF Measurements. IEEE Trans. Instrum. Meas. 69, 2345–2354 (2020) – 10.1109/tim.2020.2973873
- Wilson, R. E. PMUs [phasor measurement unit]. IEEE Potentials 13, 26–28 (1994) – 10.1109/45.283885
- Rocabert, J., Luna, A., Blaabjerg, F. & Rodríguez, P. Control of Power Converters in AC Microgrids. IEEE Trans. Power Electron. 27, 4734–4749 (2012) – 10.1109/tpel.2012.2199334
- Lasseter, R. H., Chen, Z. & Pattabiraman, D. Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE J. Emerg. Sel. Topics Power Electron. 8, 925–935 (2020) – 10.1109/jestpe.2019.2959271
- Garces, A. & Gil-Gonzalez, W. Stability Analysis for a Grid-Forming Converter with Inverse Droop Connected to an Infinite Bus. 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC) 286–290 (2021) doi:10.1109/ccac51819.2021.9633320 – 10.1109/ccac51819.2021.9633320
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Doukas, D. I., Agelidis, V. G., Papafotiou, G. & Town, G. Considerations for Integrating PMU Capabilities Into Grid-Connected Power Electronics Converters. 2018 IEEE Electronic Power Grid (eGrid) 1–6 (2018) doi:10.1109/egrid.2018.8598694 – 10.1109/egrid.2018.8598694
- Narasimhamurthi, N. On the existence of energy function for power systems with transmission losses. IEEE Trans. Circuits Syst. 31, 199–203 (1984) – 10.1109/tcs.1984.1085484
- Gonzalez-Cajigas, A., Roldan-Perez, J. & Bueno, E. J. Design and Analysis of Parallel-Connected Grid-Forming Virtual Synchronous Machines for Island and Grid-Connected Applications. IEEE Trans. Power Electron. 37, 5107–5121 (2022) – 10.1109/tpel.2021.3127463
- Milano, F., Dorfler, F., Hug, G., Hill, D. J. & Verbic, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). 2018 Power Systems Computation Conference (PSCC) (2018) doi:10.23919/pscc.2018.8450880 – 10.23919/pscc.2018.8450880
- yashen, Research roadmap on grid-forming inverters. golden. National Renewable Energy Laboratory NREL (2020)
- D’Arco, S., Suul, J. A. & Fosso, O. B. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electric Power Systems Research 122, 180–197 (2015) – 10.1016/j.epsr.2015.01.001
- Dragicevic, T., Vazquez, S. & Wheeler, P. Advanced Control Methods for Power Converters in DG Systems and Microgrids. IEEE Trans. Ind. Electron. 68, 5847–5862 (2021) – 10.1109/tie.2020.2994857
- Tielens, P. & Van Hertem, D. The relevance of inertia in power systems. Renewable and Sustainable Energy Reviews 55, 999–1009 (2016) – 10.1016/j.rser.2015.11.016
- Chen, M. et al. Generalized Multivariable Grid-Forming Control Design for Power Converters. IEEE Trans. Smart Grid 13, 2873–2885 (2022) – 10.1109/tsg.2022.3161608