A port-Hamiltonian approach to secondary voltage control of microgrids
Authors
Mahya Adibi, Jacob W. van der Woude, Dimitri Jeltsema
Abstract
This paper presents a secondary voltage control scheme for microgrids based on the port-Hamiltonian modeling framework. The proposed secondary controller compensates the deviations of voltage amplitudes from their nominal values using the concept of energy shaping, which is the essence of passivity-based control in port-Hamiltonian systems. We shape the energy function and define a new Hamiltonian function such that the new potential energy function has a strict local minimum at the desired equilibrium point. Next, a feedback control is designed such that the closed-loop system preserves the port-Hamiltonian structure. The Hamiltonian in this case is the sum of the plant and the controllers energy functions. The stability analysis is performed and sufficient conditions on the controller gains to achieve voltage regulation are derived. The effectiveness of the proposed control methodology is evaluated using simulation for a benchmark microgrid system.
Citation
- Journal: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)
- Year: 2017
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/isgteurope.2017.8260203
BibTeX
@inproceedings{Adibi_2017,
title={{A port-Hamiltonian approach to secondary voltage control of microgrids}},
DOI={10.1109/isgteurope.2017.8260203},
booktitle={{2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)}},
publisher={IEEE},
author={Adibi, Mahya and van der Woude, Jacob W. and Jeltsema, Dimitri},
year={2017},
pages={1--6}
}
References
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50, 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- kundur, Power System Stability and Control (1994)
- Rudion, K., Orths, A., Styczynski, Z. A. & Strunz, K. Design of benchmark of medium voltage distribution network for investigation of DG integration. 2006 IEEE Power Engineering Society General Meeting (2006) doi:10.1109/pes.2006.1709447 – 10.1109/pes.2006.1709447
- Simpson-Porco, J. W. et al. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 62, 7025–7038 (2015) – 10.1109/tie.2015.2436879
- Guerrero, J. M., Vasquez, J. C., Matas, J., de Vicuna, L. G. & Castilla, M. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 58, 158–172 (2011) – 10.1109/tie.2010.2066534
- Lopes, J. A. P., Moreira, C. L. & Madureira, A. G. Defining Control Strategies for MicroGrids Islanded Operation. IEEE Trans. Power Syst. 21, 916–924 (2006) – 10.1109/tpwrs.2006.873018
- Distributed Control Systems for Small-Scale Power Networks: Using Multiagent Cooperative Control Theory. IEEE Control Syst. 34, 56–77 (2014) – 10.1109/mcs.2014.2350571
- De Persis, C., Monshizadeh, N., Schiffer, J. & Dorfler, F. A Lyapunov approach to control of microgrids with a network-preserved differential-algebraic model. 2016 IEEE 55th Conference on Decision and Control (CDC) 2595–2600 (2016) doi:10.1109/cdc.2016.7798653 – 10.1109/cdc.2016.7798653
- Katiraei, F., Iravani, M. R. & Lehn, P. W. Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources. IET Gener. Transm. Distrib. 1, 369–378 (2007) – 10.1049/iet-gtd:20045207
- Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007) – 10.1109/tpel.2006.890003
- Green, T. C. & Prodanović, M. Control of inverter-based micro-grids. Electric Power Systems Research 77, 1204–1213 (2007) – 10.1016/j.epsr.2006.08.017
- Mohamed, Y. & El-Saadany, E. F. Adaptive Decentralized Droop Controller to Preserve Power Sharing Stability of Paralleled Inverters in Distributed Generation Microgrids. IEEE Trans. Power Electron. 23, 2806–2816 (2008) – 10.1109/tpel.2008.2005100
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica 74, 135–150 (2016) – 10.1016/j.automatica.2016.07.036