A port-Hamiltonian approach to formation control using bearing measurements and range observers
Authors
Abstract
In this paper we consider the problem of formation control using measurements of the bearings between vehicles. We design our system using port-Hamiltonian theory and the bondgraph modelling technique. Our approach builds upon the architecture presented in [22], which relied on partial measurements of relative position rather than position measurements with respect to an inertial frame. The previous work used a generalised form of the image Jacobians employed in image-based visual servo (IBVS) control literature to compute the desired control forces. However, the implementation of these measurement Jacobians requires unknown information about the relative positions of the vehicles. A key contribution of this paper is that we show how a depth observer can be integrated into the design to overcome this problem for the case where bearing measurements are available. Assuming that a single distance measurement is also available, we can specify a rigid goal formation in terms of the available measurements of relative positions. For this system, we prove local convergence to the desired configuration. We then provide a discussion regarding the implementation, and suggest that in practice, the distance measurement may be unnecessary. This discussion is supported by simulation results.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 7641–7646
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6761102
BibTeX
@inproceedings{Stacey_2013,
title={{A port-Hamiltonian approach to formation control using bearing measurements and range observers}},
DOI={10.1109/cdc.2013.6761102},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Stacey, Geoff and Mahony, Robert},
year={2013},
pages={7641--7646}
}
References
- Mahony, R. & Stramigioli, S. A port-Hamiltonian approach to image-based visual servo control for dynamic systems. The International Journal of Robotics Research 31, 1303–1319 (2012) – 10.1177/0278364912455074
- khalil, Nonlinear Systems (2002)
- Leonard, N. E. & Fiorelli, E. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 3 2968–2973 – 10.1109/cdc.2001.980728
- Ibuki, T., Hatanaka, T., Fujita, M. & Spong, M. W. Visual feedback pose synchronization with a generalized camera model. IEEE Conference on Decision and Control and European Control Conference 4999–5004 (2011) doi:10.1109/cdc.2011.6160748 – 10.1109/cdc.2011.6160748
- Johnson, E. N., Calise, A. J., Sattigeri, R., Watanabe, Y. & Madyastha, V. Approaches to vision-based formation control. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 1643-1648 Vol.2 (2004) doi:10.1109/cdc.2004.1430280 – 10.1109/cdc.2004.1430280
- Fujita, M., Kawai, H. & Spong, M. W. Passivity-Based Dynamic Visual Feedback Control for Three-Dimensional Target Tracking: Stability and $L_{2}$-Gain Performance Analysis. IEEE Trans. Contr. Syst. Technol. 15, 40–52 (2007) – 10.1109/tcst.2006.883236
- Hatanaka, T., Igarashi, Y., Fujita, M. & Spong, M. W. Passivity-Based Pose Synchronization in Three Dimensions. IEEE Trans. Automat. Contr. 57, 360–375 (2012) – 10.1109/tac.2011.2166668
- Franchi, A. et al. Modeling and Control of UAV Bearing Formations with Bilateral High-level Steering. The International Journal of Robotics Research 31, 1504–1525 (2012) – 10.1177/0278364912462493
- Franchi, A., Secchi, C., Hyoung Il Son, Bulthoff, H. H. & Giordano, P. R. Bilateral Teleoperation of Groups of Mobile Robots With Time-Varying Topology. IEEE Trans. Robot. 28, 1019–1033 (2012) – 10.1109/tro.2012.2196304
- Secchi, C., Franchi, A., Bulthoff, H. H. & Giordano, P. R. Bilateral teleoperation of a group of UAVs with communication delays and switching topology. 2012 IEEE International Conference on Robotics and Automation 4307–4314 (2012) doi:10.1109/icra.2012.6225304 – 10.1109/icra.2012.6225304
- Ren, W. & Beard, R. W. Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach. Journal of Guidance, Control, and Dynamics 27, 73–82 (2004) – 10.2514/1.9287
- stacey, A bondgraph approach to formation control using relative state measurements. European Control Conference (2013)
- Tanner, H. G., Jadbabaie, A. & Pappas, G. J. Flocking in Fixed and Switching Networks. IEEE Trans. Automat. Contr. 52, 863–868 (2007) – 10.1109/tac.2007.895948
- Turpin, M., Michael, N. & Kumar, V. Decentralized formation control with variable shapes for aerial robots. 2012 IEEE International Conference on Robotics and Automation 23–30 (2012) doi:10.1109/icra.2012.6225196 – 10.1109/icra.2012.6225196
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- zelazo, Rigidity maintenance control for multi-robot systems. Robotics Science and Systems (2012)
- Borutzky, W. Bond Graph Modelling And Simulation Of Mechatronic Systems An Introduction Into The Methodology. ECMS 2006 Proceedings edited by: W. Borutzky, A. Orsoni, R. Zobel 17–28 (2006) doi:10.7148/2006-0017 – 10.7148/2006-0017
- Beard, R. W., Lawton, J. & Hadaegh, F. Y. A coordination architecture for spacecraft formation control. IEEE Trans. Contr. Syst. Technol. 9, 777–790 (2001) – 10.1109/87.960341
- Franchi, A. & Giordano, P. R. Decentralized control of parallel rigid formations with direction constraints and bearing measurements. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 5310–5317 (2012) doi:10.1109/cdc.2012.6426034 – 10.1109/cdc.2012.6426034
- Balch, T. & Arkin, R. C. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Automat. 14, 926–939 (1998) – 10.1109/70.736776
- Corke, P. I. & Hutchinson, S. A. A new partitioned approach to image-based visual servo control. IEEE Trans. Robot. Automat. 17, 507–515 (2001) – 10.1109/70.954764
- Chaumette, F. & Hutchinson, S. Visual servo control. II. Advanced approaches [Tutorial]. IEEE Robot. Automat. Mag. 14, 109–118 (2007) – 10.1109/mra.2007.339609
- Chaumette, F. & Hutchinson, S. Visual servo control. I. Basic approaches. IEEE Robot. Automat. Mag. 13, 82–90 (2006) – 10.1109/mra.2006.250573
- Cao, M., Yu, C. & Anderson, B. D. O. Formation control using range-only measurements. Automatica 47, 776–781 (2011) – 10.1016/j.automatica.2011.01.067
- Fink, J., Michael, N., Kim, S. & Kumar, V. Planning and control for cooperative manipulation and transportation with aerial robots. The International Journal of Robotics Research 30, 324–334 (2010) – 10.1177/0278364910382803
- Das, A. K. et al. A vision-based formation control framework. IEEE Trans. Robot. Automat. 18, 813–825 (2002) – 10.1109/tra.2002.803463