Authors

Sascha Trostorff

Abstract

We provide a characterization for maximal monotone realizations for a certain class of (nonlinear) operators in terms of their corresponding boundary data spaces. The operators under consideration naturally arise in the study of evolutionary problems in mathematical physics. We apply our abstract characterization result to Port–Hamiltonian systems and a class of frictional boundary conditions in the theory of contact problems in visco-elasticity.

Keywords

Maximal monotone operators; Nonlinear boundary conditions; Port–Hamiltonian systems; Frictional boundary conditions

Citation

  • Journal: Journal of Functional Analysis
  • Year: 2014
  • Volume: 267
  • Issue: 8
  • Pages: 2787–2822
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.jfa.2014.08.009

BibTeX

@article{Trostorff_2014,
  title={{A characterization of boundary conditions yielding maximal monotone operators}},
  volume={267},
  ISSN={0022-1236},
  DOI={10.1016/j.jfa.2014.08.009},
  number={8},
  journal={Journal of Functional Analysis},
  publisher={Elsevier BV},
  author={Trostorff, Sascha},
  year={2014},
  pages={2787--2822}
}

Download the bib file

References

  • Arlinskij, On proper accretive extensions of positive linear relations. Ukrain. Mat. Zh. (1995)
  • Behrndt, J., Hassi, S. & de Snoo, H. Boundary Relations, Unitary Colligations, and Functional Models. Complex Analysis and Operator Theory vol. 3 57–98 (2008) – 10.1007/s11785-008-0064-z
  • CIARLET, P. G. & CIARLET, P., Jr. ANOTHER APPROACH TO LINEARIZED ELASTICITY AND A NEW PROOF OF KORN’S INEQUALITY. Mathematical Models and Methods in Applied Sciences vol. 15 259–271 (2005) – 10.1142/s0218202505000352
  • Coddington, E. A. & de Snoo, H. S. V. Positive selfadjoint extensions of positive symmetric subspaces. Mathematische Zeitschrift vol. 159 203–214 (1978) – 10.1007/bf01214571
  • Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and their Weyl families. Transactions of the American Mathematical Society vol. 358 5351–5401 (2006) – 10.1090/s0002-9947-06-04033-5
  • Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and generalized resolvents of symmetric operators. Russian Journal of Mathematical Physics vol. 16 17–60 (2009) – 10.1134/s1061920809010026
  • Dijksma, A. & de Snoo, H. Self-adjoint extensions of symmetric subspaces. Pacific Journal of Mathematics vol. 54 71–100 (1974) – 10.2140/pjm.1974.54.71
  • Duvaut, G. & Lions, J. L. Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 1976). doi:10.1007/978-3-642-66165-5 – 10.1007/978-3-642-66165-5
  • Hassi, (2012)
  • Hu, Handbook of Multivalued Analysis, vol. 2: Applications. (2000)
  • Jacob, Linear Port–Hamiltonian Systems on Infinite-Dimensional Spaces. (2012)
  • Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005)10.1137/040611677
  • Migórski, S., Ochal, A. & Sofonea, M. Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders. Nonlinear Analysis: Theory, Methods & Applications vol. 70 3738–3748 (2009) – 10.1016/j.na.2008.07.029
  • Migórski, S., Ochal, A. & Sofonea, M. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B vol. 15 687–705 (2011) – 10.3934/dcdsb.2011.15.687
  • Minty, G. J. Monotone (nonlinear) operators in Hilbert space. Duke Mathematical Journal vol. 29 (1962) – 10.1215/s0012-7094-62-02933-2
  • Morosanu, (1988)
  • Nečas, Direct Methods in the Theory of Elliptic Equations. (2011)
  • Phillips, R. S. Dissipative operators and hyperbolic systems of partial differential equations. Transactions of the American Mathematical Society vol. 90 193–254 (1959) – 10.1090/s0002-9947-1959-0104919-1
  • Picard, R. A structural observation for linear material laws in classical mathematical physics. Mathematical Methods in the Applied Sciences vol. 32 1768–1803 (2009) – 10.1002/mma.1110
  • Picard, A class of evolutionary problems with an application to acoustic waves with impedance type boundary conditions. (2012)
  • Picard, R. Mother operators and their descendants. Journal of Mathematical Analysis and Applications vol. 403 54–62 (2013) – 10.1016/j.jmaa.2013.02.004
  • Picard, Partial differential equations. A unified Hilbert space approach. (2011)
  • Picard, (2012)
  • Picard, A note on a class of conservative, well-posed linear control systems. (2013)
  • Picard,
  • Picard, R., Trostorff, S. & Waurick, M. On a class of boundary control problems. Operators and Matrices 185–204 (2014) doi:10.7153/oam-08-10 – 10.7153/oam-08-10
  • Picard, R., Trostorff, S., Waurick, M. & Wehowski, M. On non-autonomous evolutionary problems. Journal of Evolution Equations vol. 13 751–776 (2013) – 10.1007/s00028-013-0201-7
  • Robinson, S. M. Composition duality and maximal monotonicity. Mathematical Programming vol. 85 1–13 (1999) – 10.1007/s101070050043
  • Rockafellar, R. On the maximal monotonicity of subdifferential mappings. Pacific Journal of Mathematics vol. 33 209–216 (1970) – 10.2140/pjm.1970.33.209
  • Schubert,
  • Sofonea, Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. (2009)
  • Trostorff, S. An alternative approach to well-posedness of a class of differential inclusions in Hilbert spaces. Nonlinear Analysis: Theory, Methods & Applications vol. 75 5851–5865 (2012) – 10.1016/j.na.2012.06.002
  • Trostorff, S. AUTONOMOUS EVOLUTIONARY INCLUSIONS WITH APPLICATIONS TO PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS. International Journal of Pure and Apllied Mathematics vol. 85 (2013) – 10.12732/ijpam.v85i2.10
  • Trostorff, On integro-differential inclusions with operator-valued kernels. Math. Methods Appl. Sci. (2014)
  • Trostorff, S. & Waurick, M. A note on elliptic type boundary value problems with maximal monotone relations. Mathematische Nachrichten vol. 287 1545–1558 (2014) – 10.1002/mana.201200242
  • Trostorff, S. & Wehowski, M. Well-posedness of non-autonomous evolutionary inclusions. Nonlinear Analysis: Theory, Methods & Applications vol. 101 47–65 (2014) – 10.1016/j.na.2014.01.017
  • van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002)10.1016/s0393-0440(01)00083-3
  • Waurick, On non-autonomous integro-differential-algebraic evolutionary problems. Math. Methods Appl. Sci. (2014)