Authors

B. Gharesifard, M. Mahzoon, M. Farid

Abstract

Nonlinear model for transverse dynamics of a vibrating beam is derived. In this modeling large deformation for beam is considered and consequently, high order curvature terms are not neglected. An adaptation method for applying large moments in the beam tip is developed using FEM. Port Hamiltonian interconnected system modeling is used to model the resulted configuration. The energy-based variable structure method is utilized to develop an interconnected controller with energy function associated with a set of Casimir functions relating to sliding surfaces. The energy function of the controller is chosen to make an attractive sliding surface for closed-loop system. Using this system, vibration of the nonlinear beam is stabilized in the desired shape of the beam.

Citation

  • Journal: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
  • Year: 2005
  • Volume:
  • Issue:
  • Pages: 2073–2078
  • Publisher: IEEE
  • DOI: 10.1109/iros.2005.1545412

BibTeX

@inproceedings{Gharesifard_2005,
  title={{Using energy-based variable structure approach to control the vibrations in a nonlinear beam with large deformations}},
  DOI={10.1109/iros.2005.1545412},
  booktitle={{2005 IEEE/RSJ International Conference on Intelligent Robots and Systems}},
  publisher={IEEE},
  author={Gharesifard, B. and Mahzoon, M. and Farid, M.},
  year={2005},
  pages={2073--2078}
}

Download the bib file

References

  • Popov, V.-M. Hyperstability of Control Systems. (Springer Berlin Heidelberg, 1973). doi:10.1007/978-3-642-65654-5 – 10.1007/978-3-642-65654-5
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • van der schaft, Composition of dirac structures and control of port-hamiltonian systems. GeoPlex (2000)
  • Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
  • reddy, Introduction to the Finite Element Method (1993)
  • Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
  • van der schaft, Implicit port Controlled Hamiltonian systems. Journal of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
  • van der schaft, Port-controlled Hamiltonian systems: Toward a theory for control and design of nonlinear physical systems. Journal of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
  • gharesifard, Passivity-based boundary control for large deformations in a nonlinear beam. Proceedings of the International Conference on Mechanical Engineering (2004)
  • becker, Finite Elements (1981)
  • macchelli, Port Hamiltonian Systems (2003)