Authors

Aydar Sultanov, Yakov Greenberg, Evgeniya Mutsenik, Dmitry Pitsun, Evgeni Il’ichev

Abstract

We demonstrate that the non-Hermitian Hamiltonian approach can be used as a universal tool to design and describe a performance of single photon quantum electrodynamical circuits (cQED). As an example of the validity of this method, we calculate a novel six port quantum router, constructed from four qubits and three open waveguides. We have obtained analytical expressions, which describe the transmission and reflection coefficients of a single photon in general form taking into account the spread qubit’s parameters. We show that, due to naturally derived interferences, in situ tuning the probability of photon detection in desired ports.

Citation

  • Journal: Materials
  • Year: 2020
  • Volume: 13
  • Issue: 2
  • Pages: 319
  • Publisher: MDPI AG
  • DOI: 10.3390/ma13020319

BibTeX

@article{Sultanov_2020,
  title={{Universal Tool for Single-Photon Circuits: Quantum Router Design}},
  volume={13},
  ISSN={1996-1944},
  DOI={10.3390/ma13020319},
  number={2},
  journal={Materials},
  publisher={MDPI AG},
  author={Sultanov, Aydar and Greenberg, Yakov and Mutsenik, Evgeniya and Pitsun, Dmitry and Il’ichev, Evgeni},
  year={2020},
  pages={319}
}

Download the bib file

References

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008) – 10.1038/nature07127
  • Baust, A. et al. Ultrastrong coupling in two-resonator circuit QED. Phys. Rev. B 93, (2016) – 10.1103/physrevb.93.214501
  • Nataf, P. & Ciuti, C. Vacuum Degeneracy of a Circuit QED System in the Ultrastrong Coupling Regime. Phys. Rev. Lett. 104, (2010) – 10.1103/physrevlett.104.023601
  • Ashhab, S. & Nori, F. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, (2010) – 10.1103/physreva.81.042311
  • Beaudoin, F., Gambetta, J. M. & Blais, A. Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, (2011) – 10.1103/physreva.84.043832
  • Yan, W.-B. & Fan, H. Single-photon quantum router with multiple output ports. Sci Rep 4, (2014) – 10.1038/srep04820
  • Xia, All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes. Phys. Rev. X (2013)
  • Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014) – 10.1126/science.1254699
  • Dayan, B. et al. A Photon Turnstile Dynamically Regulated by One Atom. Science 319, 1062–1065 (2008) – 10.1126/science.1152261
  • Aoki, T. et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.083601
  • Cook, R., Schuster, D. I., Cleland, A. N. & Jacobs, K. Input-output theory for superconducting and photonic circuits that contain weak retroreflections and other weak pseudocavities. Phys. Rev. A 98, (2018) – 10.1103/physreva.98.013801
  • Feshbach, H. A unified theory of nuclear reactions. II. Annals of Physics 19, 287–313 (1962) – 10.1016/0003-4916(62)90221-x
  • Auerbach, N. & Zelevinsky, V. Super-radiant dynamics, doorways and resonances in nuclei and other open mesoscopic systems. Rep. Prog. Phys. 74, 106301 (2011) – 10.1088/0034-4885/74/10/106301
  • Greenberg, Ya. S. & Shtygashev, A. A. Non-Hermitian Hamiltonian approach to the microwave transmission through a one-dimensional qubit chain. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.063835
  • Greenberg, Ya. S. & Sultanov, A. N. Mollow triplet through pump-probe single-photon spectroscopy of artificial atoms. Phys. Rev. A 95, (2017) – 10.1103/physreva.95.053840
  • Sultanov, A. N. & Greenberg, Ya. S. Transfer of excited state between two qubits in an open waveguide. Low Temperature Physics 44, 203–209 (2018) – 10.1063/1.5024536
  • Sultanov, A. N., Karpov, D. S., Greenberg, Y. S., Shevchenko, S. N. & Shtygashev, A. A. Scattering of a single photon on a two-qubit structure with resonators. Low Temperature Physics 43, 799–804 (2017) – 10.1063/1.4995628
  • Sultanov, A. N. & Greenberg, Ya. S. Effect of the qubit relaxation on transport properties of microwave photons. Phys. Solid State 59, 2103–2109 (2017) – 10.1134/s1063783417110294
  • Greenberg, Ya. S. & Sultanov, A. N. Influence of the nonradiative decay of qubits into a common channel on the transport properties of microwave photons. Jetp Lett. 106, 406–410 (2017) – 10.1134/s0021364017180060
  • Lemr, K., Bartkiewicz, K., Černoch, A. & Soubusta, J. Resource-efficient linear-optical quantum router. Phys. Rev. A 87, (2013) – 10.1103/physreva.87.062333
  • Agarwal, G. S. & Huang, S. Optomechanical systems as single-photon routers. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.021801
  • Lu, J., Zhou, L., Kuang, L.-M. & Nori, F. Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.013805
  • Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett. 78, 3221–3224 (1997) – 10.1103/physrevlett.78.3221
  • Bermel, P., Rodriguez, A., Johnson, S. G., Joannopoulos, J. D. & Soljačić, M. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A 74, (2006) – 10.1103/physreva.74.043818
  • Chen, X.-Y., Zhang, F.-Y. & Li, C. Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016) – 10.1364/josab.33.000583
  • Zhou, L., Yang, L.-P., Li, Y. & Sun, C. P. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.103604
  • Shapiro, J. H. & Wong, F. N. On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. Opt. Lett. 32, 2698 (2007) – 10.1364/ol.32.002698
  • Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys 3, 807–812 (2007) – 10.1038/nphys708
  • Keil, R. et al. All-optical routing and switching for three-dimensional photonic circuitry. Sci Rep 1, (2011) – 10.1038/srep00094
  • Hoi, I.-C. et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.073601
  • Zhou, L., Gong, Z. R., Liu, Y., Sun, C. P. & Nori, F. Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide. Phys. Rev. Lett. 101, (2008) – 10.1103/physrevlett.101.100501
  • Longo, P., Schmitteckert, P. & Busch, K. Few-Photon Transport in Low-Dimensional Systems: Interaction-Induced Radiation Trapping. Phys. Rev. Lett. 104, (2010) – 10.1103/physrevlett.104.023602
  • Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F. J. & Gonzalez-Tudela, A. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A 94, (2016) – 10.1103/physreva.94.063817
  • Gu, X., Kockum, A. F., Miranowicz, A., Liu, Y. & Nori, F. Microwave photonics with superconducting quantum circuits. Physics Reports 718–719, 1–102 (2017) – 10.1016/j.physrep.2017.10.002
  • Astafiev, O. et al. Resonance Fluorescence of a Single Artificial Atom. Science 327, 840–843 (2010) – 10.1126/science.1181918
  • Konyk, W. & Gea-Banacloche, J. One- and two-photon scattering by two atoms in a waveguide. Phys. Rev. A 96, (2017) – 10.1103/physreva.96.063826
  • Zheng, H. & Baranger, H. U. Persistent Quantum Beats and Long-Distance Entanglement from Waveguide-Mediated Interactions. Phys. Rev. Lett. 110, (2013) – 10.1103/physrevlett.110.113601
  • Simons, R. N. Coplanar Waveguide Circuits, Components, and Systems. (2001) doi:10.1002/0471224758 – 10.1002/0471224758
  • Paauw, F. G., Fedorov, A., Harmans, C. J. P. M. & Mooij, J. E. Tuning the Gap of a Superconducting Flux Qubit. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.090501
  • Castellano, M. G., Chiarello, F., Torrioli, G. & Carelli, P. Static flux bias of a flux qubit using persistent current trapping. Supercond. Sci. Technol. 19, 1158–1163 (2006) – 10.1088/0953-2048/19/11/011
  • Robertson, T. L. et al. Quantum theory of three-junction flux qubit with non-negligible loop inductance: Towards scalability. Phys. Rev. B 73, (2006) – 10.1103/physrevb.73.174526
  • Casparis, L. et al. Superconducting gatemon qubit based on a proximitized two-dimensional electron gas. Nature Nanotech 13, 915–919 (2018) – 10.1038/s41565-018-0207-y