Uncontrollable dissipative systems: observability and embeddability
Authors
Selvaraj Karikalan, Madhu N. Belur, Chirayu D. Athalye, Rihab Abdul Razak
Abstract
The theory of dissipativity is well developed for controllable systems. A more appropriate definition in the context uncontrollable systems terms existence a storage function, namely function such that, along every system trajectory, its rate change at each time instant most power supplied to that time. However, even when expressible just external variables, property crucially hinges on whether or not depends variables unobservable/hidden from variables: this paper investigates key aspects both cases, and also proposes another intuitive dissipativity. These three definitions are compared: we show drawbacks one addressed by another.Dealing first with observable functions, under conditions no two poles add zero strict as frequency tends infinity, prove dissipativities part equivalent. We use behavioural approach formalising notions: behaviour set all trajectories. functions have be unobservable lossless’ It known, however, result certain fallacious’ examples lossless propose an dissipativity: system/behaviour called dissipative if it can embedded superbehaviour. embeddability results them resolve fallacy example termed due functions. next quite unreasonably, admits behaviours strictly antidissipative. Drawbacks RLC circuits finally related inability realise/synthesise special one-port electrical network, nullator, using only passive components.
Citation
- Journal: International Journal of Control
- Year: 2014
- Volume: 87
- Issue: 1
- Pages: 101–119
- Publisher: Informa UK Limited
- DOI: 10.1080/00207179.2013.823668
BibTeX
@article{Karikalan_2013,
title={{Uncontrollable dissipative systems: observability and embeddability}},
volume={87},
ISSN={1366-5820},
DOI={10.1080/00207179.2013.823668},
number={1},
journal={International Journal of Control},
publisher={Informa UK Limited},
author={Karikalan, Selvaraj and Belur, Madhu N. and Athalye, Chirayu D. and Razak, Rihab Abdul},
year={2013},
pages={101--119}
}References
- Belevitch V., Classical network theory (1968)
- Belur, M. N., Pillai, H. K. & Trentelman, H. L. Dissipative systems synthesis: A linear algebraic approach. Linear Algebra and its Applications 425, 739–756 (2007) – 10.1016/j.laa.2007.04.016
- Bott, R. & Duffin, R. J. Impedance Synthesis without Use of Transformers. Journal of Applied Physics 20, 816–816 (1949) – 10.1063/1.1698532
- Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. (1994) doi:10.1137/1.9781611970777 – 10.1137/1.9781611970777
- Brune, O. Synthesis of a Finite Two‐terminal Network whose Driving‐point Impedance is a Prescribed Function of Frequency. Journal of Mathematics and Physics 10, 191–236 (1931) – 10.1002/sapm1931101191
- Çamlıbel M.K., Proceedings of the 42nd IEEE Conference on Decision and Control (CDC), Maui, Hawaii, December (2003)
- Carlin, H. Singular Network Elements. IEEE Trans. Circuit Theory 11, 67–72 (1964) – 10.1109/tct.1964.1082264
- Gohberg I., Indefinite linear algebra and applications (2005)
- Kailath T., Linear systems (1980)
- Pal, D. & Belur, M. N. Dissipativity of Uncontrollable Systems, Storage Functions, and Lyapunov Functions. SIAM J. Control Optim. 47, 2930–2966 (2009) – 10.1137/070699019
- Peeters, R. & Rapisarda, P. A two-variable approach to solve the polynomial Lyapunov equation. Systems & Control Letters 42, 117–126 (2001) – 10.1016/s0167-6911(00)00083-9
- Pillai, H. K. & Shankar, S. A Behavioral Approach to Control of Distributed Systems. SIAM J. Control Optim. 37, 388–408 (1999) – 10.1137/s0363012997321784
- Polderman, J. W. & Willems, J. C. Introduction to Mathematical Systems Theory. Texts in Applied Mathematics (Springer New York, 1998). doi:10.1007/978-1-4757-2953-5 – 10.1007/978-1-4757-2953-5
- Rao, S. Controllability of conservative behaviours. International Journal of Control 85, 983–989 (2012) – 10.1080/00207179.2012.673134
- Rapisarda, P. & Willems, J. C. State Maps for Linear Systems. SIAM J. Control Optim. 35, 1053–1091 (1997) – 10.1137/s0363012994268412
- Rapisarda, P. & Willems, J. C. Conserved- and zero-mean quadratic quantities in oscillatory systems. Math. Control Signals Syst. 17, 173–200 (2005) – 10.1007/s00498-005-0149-4
- Rosenblum, M. On the operator equation BX−XA=Q. Duke Math. J. 23, (1956) – 10.1215/s0012-7094-56-02324-9
- Scherer, C. The solution set of the algebraic Riccati equation and the algebraic Riccati inequality. Linear Algebra and its Applications 153, 99–122 (1991) – 10.1016/0024-3795(91)90213-g
- Shayman, M. A. Geometry of the Algebraic Riccati Equation, Part I. SIAM J. Control Optim. 21, 375–394 (1983) – 10.1137/0321021
- Trentelman, H. L. & Rapisarda, P. Pick Matrix Conditions for Sign-Definite Solutions of the Algebraic Riccati Equation. SIAM J. Control Optim. 40, 969–991 (2001) – 10.1137/s036301290036851x
- Trentelman, H. L. & Willems, J. C. The Dissipation Inequality and the Algebraic Riccati Equation. The Riccati Equation 197–242 (1991) doi:10.1007/978-3-642-58223-3_8 – 10.1007/978-3-642-58223-3_8
- Willems J.C., Mathematical control theory (1998)
- Willems J.C., Proceedings of the 43rd IEEE Conference on Decision and Control (CDC), Atlantis, The Bahamas, December (2004)
- Willems, J. C. Dissipative Dynamical Systems. European Journal of Control 13, 134–151 (2007) – 10.3166/ejc.13.134-151
- Willems, J. C. & Trentelman, H. L. On Quadratic Differential Forms. SIAM J. Control Optim. 36, 1703–1749 (1998) – 10.1137/s0363012996303062
- Willems, J. C. & Trentelman, H. L. Synthesis of dissipative systems using quadratic differential forms: Part I. IEEE Trans. Automat. Contr. 47, 53–69 (2002) – 10.1109/9.981722