Authors

K Mukherjee, H P Goswami, S Whitlock, S Wüster, A Eisfeld

Abstract

Two-dimensional (2D) spectroscopy uses multiple electromagnetic pulses to infer the properties of a complex system. A paradigmatic class of target systems are molecular aggregates, for which one can obtain information on the eigenstates, various types of static and dynamic disorder and on relaxation processes. However, two-dimensional spectra can be difficult to interpret without precise knowledge of how the signal components relate to microscopic Hamiltonian parameters and system-bath interactions. Here we show that two-dimensional spectroscopy can be mapped in the microwave domain to highly controllable Rydberg quantum simulators. By porting 2D spectroscopy to Rydberg atoms, we firstly open the possibility of its experimental quantum simulation, in a case where parameters and interactions are very well known. Secondly, the technique may provide additional handles for experimental access to coherences between system states and the ability to discriminate different types of decoherence mechanisms in Rydberg gases. We investigate the requirements for a specific implementation utilizing multiple phase coherent microwave pulses and a phase cycling technique to isolate signal components.

Citation

  • Journal: New Journal of Physics
  • Year: 2020
  • Volume: 22
  • Issue: 7
  • Pages: 073040
  • Publisher: IOP Publishing
  • DOI: 10.1088/1367-2630/ab9984

BibTeX

@article{Mukherjee_2020,
  title={{Two-dimensional spectroscopy of Rydberg gases}},
  volume={22},
  ISSN={1367-2630},
  DOI={10.1088/1367-2630/ab9984},
  number={7},
  journal={New Journal of Physics},
  publisher={IOP Publishing},
  author={Mukherjee, K and Goswami, H P and Whitlock, S and Wüster, S and Eisfeld, A},
  year={2020},
  pages={073040}
}

Download the bib file

References

  • May, (2001)
  • Saikin, S. K., Eisfeld, A., Valleau, S. & Aspuru-Guzik, A. Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2, 21–38 (2013) – 10.1515/nanoph-2012-0025
  • van Grondelle, R. & Novoderezhkin, V. I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006) – 10.1039/b514032c
  • Mukamel, (1996)
  • Mukamel, S. Multidimensional Femtosecond Correlation Spectroscopies of Electronic and Vibrational Excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000) – 10.1146/annurev.physchem.51.1.691
  • Tekavec, P. F., Dyke, T. R. & Marcus, A. H. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation. The Journal of Chemical Physics 125, (2006) – 10.1063/1.2386159
  • Nemeth, A. et al. Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations. The Journal of Chemical Physics 133, (2010) – 10.1063/1.3474995
  • Pachón, L. A., Marcus, A. H. & Aspuru-Guzik, A. Quantum process tomography by 2D fluorescence spectroscopy. The Journal of Chemical Physics 142, (2015) – 10.1063/1.4919954
  • Milota, F. et al. Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. J. Phys. Chem. A 117, 6007–6014 (2013) – 10.1021/jp3119605
  • Brixner, T., Hildner, R., Köhler, J., Lambert, C. & Würthner, F. Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials 7, (2017) – 10.1002/aenm.201700236
  • Kato, T. & Tanimura, Y. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath. The Journal of Chemical Physics 120, 260–271 (2004) – 10.1063/1.1629272
  • Ritschel, G., Roden, J., Strunz, W. T. & Eisfeld, A. An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna–Matthews–Olson complex. New J. Phys. 13, 113034 (2011) – 10.1088/1367-2630/13/11/113034
  • Suess, D., Eisfeld, A. & Strunz, W. T. Hierarchy of Stochastic Pure States for Open Quantum System Dynamics. Phys. Rev. Lett. 113, (2014) – 10.1103/physrevlett.113.150403
  • Kreisbeck, C., Kramer, T., Rodríguez, M. & Hein, B. High-Performance Solution of Hierarchical Equations of Motion for Studying Energy Transfer in Light-Harvesting Complexes. J. Chem. Theory Comput. 7, 2166–2174 (2011) – 10.1021/ct200126d
  • Schönleber, D. W., Eisfeld, A., Genkin, M., Whitlock, S. & Wüster, S. Quantum Simulation of Energy Transport with Embedded Rydberg Aggregates. Phys. Rev. Lett. 114, (2015) – 10.1103/physrevlett.114.123005
  • Mostame, S. et al. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes. New J. Phys. 14, 105013 (2012) – 10.1088/1367-2630/14/10/105013
  • Mostame, S. et al. Emulation of complex open quantum systems using superconducting qubits. Quantum Inf Process 16, (2016) – 10.1007/s11128-016-1489-3
  • Płodzień, M., Sowiński, T. & Kokkelmans, S. Simulating polaron biophysics with Rydberg atoms. Sci Rep 8, (2018) – 10.1038/s41598-018-27232-4
  • Herrera, F. & Krems, R. V. Tunable Holstein model with cold polar molecules. Phys. Rev. A 84, (2011) – 10.1103/physreva.84.051401
  • Potočnik, A. et al. Studying light-harvesting models with superconducting circuits. Nat Commun 9, (2018) – 10.1038/s41467-018-03312-x
  • Hakelberg, F., Kiefer, P., Wittemer, M., Warring, U. & Schaetz, T. Interference in a Prototype of a Two-Dimensional Ion Trap Array Quantum Simulator. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.100504
  • Gorman, D. J. et al. Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator. Phys. Rev. X 8, (2018) – 10.1103/physrevx.8.011038
  • van Amerongen, (2000)
  • Barredo, D. et al. Coherent Excitation Transfer in a Spin Chain of Three Rydberg Atoms. Phys. Rev. Lett. 114, (2015) – 10.1103/physrevlett.114.113002
  • Nogrette, F. et al. Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries. Phys. Rev. X 4, (2014) – 10.1103/physrevx.4.021034
  • Wang, Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays. (2019)
  • Gallagher, (1994)
  • Schempp, H., Günter, G., Wüster, S., Weidemüller, M. & Whitlock, S. Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains. Phys. Rev. Lett. 115, (2015) – 10.1103/physrevlett.115.093002
  • Genkin, M., Schönleber, D. W., Wüster, S. & Eisfeld, A. Non-Markovian dynamics in ultracold Rydberg aggregates. J. Phys. B: At. Mol. Opt. Phys. 49, 134001 (2016) – 10.1088/0953-4075/49/13/134001
  • Schönleber, D. W., Bentley, C. D. B. & Eisfeld, A. Engineering thermal reservoirs for ultracold dipole–dipole-interacting Rydberg atoms. New J. Phys. 20, 013011 (2018) – 10.1088/1367-2630/aa9c97
  • Bentley, C. D. B. & Eisfeld, A. Gaussian processes for choosing laser parameters for driven, dissipative Rydberg aggregates. J. Phys. B: At. Mol. Opt. Phys. 51, 205003 (2018) – 10.1088/1361-6455/aadeaf
  • Lim, J., Lee, H. & Ahn, J. Review of cold Rydberg atoms and their applications. Journal of the Korean Physical Society 63, 867–876 (2013) – 10.3938/jkps.63.867
  • Löw, R. et al. An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B: At. Mol. Opt. Phys. 45, 113001 (2012) – 10.1088/0953-4075/45/11/113001
  • Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998) – 10.1038/27617
  • Wilcox, D. S., Hotopp, K. M. & Dian, B. C. Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy. J. Phys. Chem. A 115, 8895–8905 (2011) – 10.1021/jp2043202
  • Vogelsanger, B., Bauder, A. & Mäder, H. Two-dimensional experiments with collision-induced transfer of populations in microwave Fourier transform spectroscopy. The Journal of Chemical Physics 91, 2059–2068 (1989) – 10.1063/1.457067
  • Boyd, (2007)
  • Tan, H.-S. Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. The Journal of Chemical Physics 129, (2008) – 10.1063/1.2978381
  • Keusters, D., Tan, H.-S. & Warren. Role of Pulse Phase and Direction in Two-Dimensional Optical Spectroscopy. J. Phys. Chem. A 103, 10369–10380 (1999) – 10.1021/jp992325b
  • Tian, P., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond Phase-Coherent Two-Dimensional Spectroscopy. Science 300, 1553–1555 (2003) – 10.1126/science.1083433
  • Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. The Journal of Chemical Physics 127, (2007) – 10.1063/1.2800560
  • Bruder, L., Mudrich, M. & Stienkemeier, F. Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules. Phys. Chem. Chem. Phys. 17, 23877–23885 (2015) – 10.1039/c5cp03868e
  • Bruder, L. et al. Delocalized excitons and interaction effects in extremely dilute thermal ensembles. Phys. Chem. Chem. Phys. 21, 2276–2282 (2019) – 10.1039/c8cp05851b
  • Aeschlimann, M. et al. Coherent Two-Dimensional Nanoscopy. Science 333, 1723–1726 (2011) – 10.1126/science.1209206
  • Nardin, G., Autry, T. M., Silverman, K. L. & Cundiff, S. T. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21, 28617 (2013) – 10.1364/oe.21.028617
  • Karki, K. J. et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat Commun 5, (2014) – 10.1038/ncomms6869
  • Roeding, S. & Brixner, T. Coherent two-dimensional electronic mass spectrometry. Nat Commun 9, (2018) – 10.1038/s41467-018-04927-w
  • Kühn, O., Mančal, T. & Pullerits, T. Interpreting Fluorescence Detected Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. Lett. 11, 838–842 (2020) – 10.1021/acs.jpclett.9b03851
  • Wüster, S. & Rost, J.-M. Rydberg aggregates. J. Phys. B: At. Mol. Opt. Phys. 51, 032001 (2018) – 10.1088/1361-6455/aa9967
  • Möbius, S., Wüster, S., Ates, C., Eisfeld, A. & Rost, J. M. Adiabatic entanglement transport in Rydberg aggregates. J. Phys. B: At. Mol. Opt. Phys. 44, 184011 (2011) – 10.1088/0953-4075/44/18/184011
  • Ravets, S., Labuhn, H., Barredo, D., Lahaye, T. & Browaeys, A. Measurement of the angular dependence of the dipole-dipole interaction between two individual Rydberg atoms at a Förster resonance. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.020701
  • Leonhardt, K., Wüster, S. & Rost, J. M. Orthogonal flexible Rydberg aggregates. Phys. Rev. A 93, (2016) – 10.1103/physreva.93.022708
  • Reiter, F. & Sørensen, A. S. Effective operator formalism for open quantum systems. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.032111
  • Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations. Computer Physics Communications 184, 201–208 (2013) – 10.1016/j.cpc.2012.08.016
  • Dennis, (2012)
  • Katz, O., Bromberg, Y. & Silberberg, Y. Compressive ghost imaging. Applied Physics Letters 95, (2009) – 10.1063/1.3238296
  • Almeida, J., Prior, J. & Plenio, M. B. Computation of Two-Dimensional Spectra Assisted by Compressed Sampling. J. Phys. Chem. Lett. 3, 2692–2696 (2012) – 10.1021/jz3009369
  • Andrade, X., Sanders, J. N. & Aspuru-Guzik, A. Application of compressed sensing to the simulation of atomic systems. Proc. Natl. Acad. Sci. U.S.A. 109, 13928–13933 (2012) – 10.1073/pnas.1209890109
  • Roeding, S., Klimovich, N. & Brixner, T. Optimizing sparse sampling for 2D electronic spectroscopy. The Journal of Chemical Physics 146, (2017) – 10.1063/1.4976309
  • Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007) – 10.1038/nature05678
  • Hayes, D. & Engel, G. S. Extracting the Excitonic Hamiltonian of the Fenna-Matthews-Olson Complex Using Three-Dimensional Third-Order Electronic Spectroscopy. Biophysical Journal 100, 2043–2052 (2011) – 10.1016/j.bpj.2010.12.3747
  • Li, Z.-Z., Bruder, L., Stienkemeier, F. & Eisfeld, A. Probing weak dipole-dipole interaction using phase-modulated nonlinear spectroscopy. Phys. Rev. A 95, (2017) – 10.1103/physreva.95.052509
  • Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. The Journal of Chemical Physics 127, (2007) – 10.1063/1.2800560
  • Perdomo-Ortiz, A., Widom, J. R., Lott, G. A., Aspuru-Guzik, A. & Marcus, A. H. Conformation and Electronic Population Transfer in Membrane-Supported Self-Assembled Porphyrin Dimers by 2D Fluorescence Spectroscopy. J. Phys. Chem. B 116, 10757–10770 (2012) – 10.1021/jp305916x
  • Damtie, F. A., Wacker, A., Pullerits, T. & Karki, K. J. Two-dimensional action spectroscopy of excitonic systems: Explicit simulation using a phase-modulation technique. Phys. Rev. A 96, (2017) – 10.1103/physreva.96.053830
  • Aman, J. A. et al. Trap losses induced by near-resonant Rydberg dressing of cold atomic gases. Phys. Rev. A 93, (2016) – 10.1103/physreva.93.043425
  • Ryabtsev, I. I. et al. Coherence of three-body Förster resonances in Rydberg atoms. Phys. Rev. A 98, (2018) – 10.1103/physreva.98.052703
  • Orioli, A. P. et al. Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System. Phys. Rev. Lett. 120, (2018) – 10.1103/physrevlett.120.063601
  • Whitlock, S., Wildhagen, H., Weimer, H. & Weidemüller, M. Diffusive to Nonergodic Dipolar Transport in a Dissipative Atomic Medium. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.213606
  • Ates, C., Eisfeld, A. & Rost, J. M. Motion of Rydberg atoms induced by resonant dipole–dipole interactions. New J. Phys. 10, 045030 (2008) – 10.1088/1367-2630/10/4/045030
  • Wüster, S., Ates, C., Eisfeld, A. & Rost, J. M. Newton’s Cradle and Entanglement Transport in a Flexible Rydberg Chain. Phys. Rev. Lett. 105, (2010) – 10.1103/physrevlett.105.053004
  • Wüster, S., Eisfeld, A. & Rost, J. M. Conical Intersections in an Ultracold Gas. Phys. Rev. Lett. 106, (2011) – 10.1103/physrevlett.106.153002
  • Roden, J., Eisfeld, A., Wolff, W. & Strunz, W. T. Influence of Complex Exciton-Phonon Coupling on Optical Absorption and Energy Transfer of Quantum Aggregates. Phys. Rev. Lett. 103, (2009) – 10.1103/physrevlett.103.058301
  • G W, (2005)
  • Harbola, U. & Mukamel, S. Superoperator nonequilibrium Green’s function theory of many-body systems; applications to charge transfer and transport in open junctions. Physics Reports 465, 191–222 (2008) – 10.1016/j.physrep.2008.05.003
  • Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, (2016) – 10.1103/revmodphys.88.045008
  • Zhang, Z., Wells, K. L., Seidel, M. T. & Tan, H.-S. Fifth-Order Three-Dimensional Electronic Spectroscopy Using a Pump–Probe Configuration. J. Phys. Chem. B 117, 15369–15385 (2013) – 10.1021/jp4046403
  • Meyer, S. & Engel, V. Non-perturbative wave-packet calculations of time-resolved four-wave-mixing signals. Appl Phys B 71, 293–297 (2000) – 10.1007/s003400000342
  • Bodenhausen, G., Kogler, H. & Ernst, R. R. Selection of coherence-transfer pathways in NMR pulse experiments. Journal of Magnetic Resonance (1969) 58, 370–388 (1984) – 10.1016/0022-2364(84)90142-2
  • Bain, A. D. Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures. Journal of Magnetic Resonance (1969) 56, 418–427 (1984) – 10.1016/0022-2364(84)90305-6
  • Zhang, P.-P. & Eisfeld, A. Non-Perturbative Calculation of Two-Dimensional Spectra Using the Stochastic Hierarchy of Pure States. J. Phys. Chem. Lett. 7, 4488–4494 (2016) – 10.1021/acs.jpclett.6b02111
  • De, A. K., Monahan, D., Dawlaty, J. M. & Fleming, G. R. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. The Journal of Chemical Physics 140, (2014) – 10.1063/1.4874697