Authors

Hans-Karl Janssen, Olaf Stenull

Abstract

We study random lattice networks consisting of resistorlike and diodelike bonds. For investigating the transport properties of these random resistor diode networks we introduce a field-theoretic Hamiltonian amenable to renormalization group analysis. We focus on the average two-port resistance at the transition from the nonpercolating to the directed percolating phase and calculate the corresponding resistance exponent straight phi to two-loop order. Moreover, we determine the backbone dimension D(B) of directed percolation clusters to two-loop order. We obtain a scaling relation for D(B) that is in agreement with well known scaling arguments.

Citation

  • Journal: Physical Review E
  • Year: 2002
  • Volume: 63
  • Issue: 2
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/physreve.63.025103

BibTeX

@article{Janssen_2001,
  title={{Transport on directed percolation clusters}},
  volume={63},
  ISSN={1095-3787},
  DOI={10.1103/physreve.63.025103},
  number={2},
  journal={Physical Review E},
  publisher={American Physical Society (APS)},
  author={Janssen, Hans-Karl and Stenull, Olaf},
  year={2001}
}

Download the bib file

References

  • Van Lien, N. & Shklovskii, B. I. Hopping conduction in strong electric fields and directed percolation. Solid State Communications 38, 99–102 (1981) – 10.1016/0038-1098(81)90798-5
  • Kertesz, J. & Vicsec, T. Oriented bond percolation. J. Phys. C: Solid State Phys. 13, L343–L348 (1980) – 10.1088/0022-3719/13/14/001
  • Grassberger, P. On the spreading of two-dimensional percolation. J. Phys. A: Math. Gen. 18, L215–L219 (1985) – 10.1088/0305-4470/18/4/005
  • Sneppen, K. & Jensen, M. H. Sneppen and Jensen reply. Phys. Rev. Lett. 70, 3833–3833 (1993) – 10.1103/physrevlett.70.3833
  • Sneppen, K. & Jensen, M. H. Colored activity in self-organized critical interface dynamics. Phys. Rev. Lett. 71, 101–104 (1993) – 10.1103/physrevlett.71.101
  • Sneppen, K. & Jensen, M. H. Multidiffusion in critical dynamics of strings and membranes. Phys. Rev. E 49, 919–922 (1994) – 10.1103/physreve.49.919
  • Bak, P. & Sneppen, K. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993) – 10.1103/physrevlett.71.4083
  • Paczuski, M., Maslov, S. & Bak, P. Field Theory for a Model of Self-Organized Criticality. Europhys. Lett. 27, 97–102 (1994) – 10.1209/0295-5075/27/2/004
  • Stenull, O., Janssen, H. K. & Oerding, K. Critical exponents for diluted resistor networks. Phys. Rev. E 59, 4919–4930 (1999) – 10.1103/physreve.59.4919
  • Janssen, H., Stenull, O. & Oerding, K. Resistance of Feynman diagrams and the percolation backbone dimension. Phys. Rev. E 59, R6239–R6242 (1999) – 10.1103/physreve.59.r6239
  • Janssen, H. K. & Stenull, O. Diluted networks of nonlinear resistors and fractal dimensions of percolation clusters. Phys. Rev. E 61, 4821–4834 (2000) – 10.1103/physreve.61.4821
  • O. Stenull, Renormalized Field Theory of Random Resistor Networks (2000)
  • Stenull, O. & Janssen, H. K. Master operators govern multifractality in percolation. Europhys. Lett. 51, 539–545 (2000) – 10.1209/epl/i2000-00372-y
  • Redner, S. Percolation and conduction in a random resistor-diode network. J. Phys. A: Math. Gen. 14, L349–L354 (1981) – 10.1088/0305-4470/14/9/007
  • Redner, S. Directed and diode percolation. Phys. Rev. B 25, 3242–3250 (1982) – 10.1103/physrevb.25.3242
  • S. Redner, Percolation Structures and Processes (1983)
  • Broadbent, S. R. & Hammersley, J. M. Percolation processes. Math. Proc. Camb. Phil. Soc. 53, 629–641 (1957) – 10.1017/s0305004100032680
  • Janssen, H.-K. & Stenull, O. Random resistor-diode networks and the crossover from isotropic to directed percolation. Phys. Rev. E 62, 3173–3185 (2000) – 10.1103/physreve.62.3173
  • Stephen, M. J. Mean-field theory and critical exponents for a random resistor network. Phys. Rev. B 17, 4444–4453 (1978) – 10.1103/physrevb.17.4444
  • Harris, A. B. Field-theoretic formulation of the randomly diluted nonlinear resistor network. Phys. Rev. B 35, 5056–5065 (1987) – 10.1103/physrevb.35.5056
  • Harris, A. B. & Lubensky, T. C. Randomly dilutedxyand resistor networks near the percolation threshold. Phys. Rev. B 35, 6964–6986 (1987) – 10.1103/physrevb.35.6964
  • Cardy, J. L. & Sugar, R. L. Directed percolation and Reggeon field theory. J. Phys. A: Math. Gen. 13, L423–L427 (1980) – 10.1088/0305-4470/13/12/002
  • Janssen, H. K. On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z. Physik B - Condensed Matter 42, 151–154 (1981) – 10.1007/bf01319549
  • D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (1984)
  • Zinn-Justin, J. Quantum Field Theory and Critical Phenomena. (2002) doi:10.1093/acprof:oso/9780198509233.001.0001 – 10.1093/acprof:oso/9780198509233.001.0001
  • Lubensky, T. C. & Wang, J. Percolation conductivity exponenttto second order inε=6-d. Phys. Rev. B 33, 4998–5009 (1986) – 10.1103/physrevb.33.4998
  • Redner, S. & Mueller, P. R. Conductivity of a random directed-diode network near the percolation threshold. Phys. Rev. B 26, 5293–5295 (1982) – 10.1103/physrevb.26.5293
  • Arora, B. M., Barma, M., Dhar, D. & Phani, M. K. Conductivity of a two-dimensional random diode-insulator network. J. Phys. C: Solid State Phys. 16, 2913–2921 (1983) – 10.1088/0022-3719/16/15/013
  • J. Kertész, Fractals in Science (1994)
  • Hede, B., Kert�sz, J. & Vicsek, T. Self-affine fractal clusters: Conceptual questions and numerical results for directed percolation. J Stat Phys 64, 829–841 (1991) – 10.1007/bf01048318