Trajectory Tracking via Interconnection and Damping Assignment Passivity-Based Control for a Permanent Magnet Synchronous Motor
Authors
Daniel Sting Martinez-Padron, San Jose de la Rosa-Mendoza, Ricardo Alvarez-Salas, Gerardo Espinosa-Perez, Mario Arturo Gonzalez-Garcia
Abstract
This paper presents a controller design to track speed, position, and torque trajectories for a permanent magnet synchronous motor (PMSM). This scheme is based on the interconnection and damping assignment passivity-based control (IDA-PBC) technique recently proposed to solve the tracking control problem for mechanical underactuated systems. The proposed approach regulates the dynamics of the tracking system error at the origin, assuming the realizable trajectories preserve the motor’s port-controlled Hamiltonian structure. The importance of the contribution is two-fold: First, from the theoretical perspective, the trajectory tracking control problem is solved with proved stability properties, a topic that has not been deeply studied with the IDA-PBC methodology design. Second, from the practical point of view, the proposed control scheme exhibits a simple structure for practical implementation and strong robustness properties with respect to parametric uncertainties. The contribution is evaluated under both numerical and experimental environments considering a speed profile that demands the achievement of high dynamic performances.
Citation
- Journal: Applied Sciences
- Year: 2024
- Volume: 14
- Issue: 17
- Pages: 7977
- Publisher: MDPI AG
- DOI: 10.3390/app14177977
BibTeX
@article{Martinez_Padron_2024,
title={{Trajectory Tracking via Interconnection and Damping Assignment Passivity-Based Control for a Permanent Magnet Synchronous Motor}},
volume={14},
ISSN={2076-3417},
DOI={10.3390/app14177977},
number={17},
journal={Applied Sciences},
publisher={MDPI AG},
author={Martinez-Padron, Daniel Sting and de la Rosa-Mendoza, San Jose and Alvarez-Salas, Ricardo and Espinosa-Perez, Gerardo and Gonzalez-Garcia, Mario Arturo},
year={2024},
pages={7977}
}
References
- Naouar, M., Naassani, A., Monmasson, E. & Slama-Belkhodja, I. FPGA-Based Speed Control of Synchronous Machine using a P-PI Controller. 2006 IEEE International Symposium on Industrial Electronics 1527–1532 (2006) doi:10.1109/isie.2006.295698 – 10.1109/isie.2006.295698
- Li, W., Lin, W. & Liu, P. X. Speed Tracking Control Based on Backstepping of Permanent Magnet Synchronous Motor with Uncertainty. 2007 International Conference on Mechatronics and Automation 3657–3661 (2007) doi:10.1109/icma.2007.4304154 – 10.1109/icma.2007.4304154
- Solsona, J., Valla, M. I. & Muravchik, C. Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation. IEEE Trans. On energy Conversion 15, 163–168 (2000) – 10.1109/60.866994
- Wang, Y., Zhu, J. G. & Guo, Y. G. A survey of direct torque control schemes for permanent magnet synchronous motor drives. 2007 Australasian Universities Power Engineering Conference 1–5 (2007) doi:10.1109/aupec.2007.4548041 – 10.1109/aupec.2007.4548041
- Khanchoul, M., Hilairet, M. & Normand-Cyrot, D. A passivity-based controller under low sampling for speed control of PMSM. Control Engineering Practice 26, 20–27 (2014) – 10.1016/j.conengprac.2013.12.013
- Peng, J. & Yao, M. Overview of Predictive Control Technology for Permanent Magnet Synchronous Motor Systems. Applied Sciences 13, 6255 (2023) – 10.3390/app13106255
- Zhang, Q. & Zhang, C. Speed Control of PMSM Based on Fuzzy Active Disturbance Rejection Control under Small Disturbances. Applied Sciences 13, 10775 (2023) – 10.3390/app131910775
- Chen, L. et al. Continuous Adaptive Fast Terminal Sliding Mode-Based Speed Regulation Control of PMSM Drive via Improved Super- Twisting Observer. IEEE Trans. Ind. Electron. 71, 5105–5115 (2024) – 10.1109/tie.2023.3288147
- Belkhier, Y. et al. Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor. Energy Reports 8, 1350–1361 (2022) – 10.1016/j.egyr.2021.12.057
- Belkhier, Y. et al. Robust interconnection and damping assignment energy-based control for a permanent magnet synchronous motor using high order sliding mode approach and nonlinear observer. Energy Reports 8, 1731–1740 (2022) – 10.1016/j.egyr.2021.12.075
- Ortega, R., Liu, Z. & Su, H. Control via interconnection and damping assignment of linear time-invariant systems: a tutorial. International Journal of Control 85, 603–611 (2012) – 10.1080/00207179.2012.660734
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Chang, D. E. Generalization of the IDA-PBC method for stabilization of mechanical systems. 18th Mediterranean Conference on Control and Automation, MED’10 226–230 (2010) doi:10.1109/med.2010.5547672 – 10.1109/med.2010.5547672
- Galaz, M., Ortega, R., Bazanella, A. S. & Stankovic, A. M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, 111–119 (2003) – 10.1016/s0005-1098(02)00177-2
- Batlle, C., Doria-Cerezo, A. & Ortega, R. Power flow control of a doubly-fed induction machine coupled to a flywheel. Proceedings of the 2004 IEEE International Conference on Control Applications, 2004. vol. 2 1645–1650 – 10.1109/cca.2004.1387612
- Petrovic, V., Ortega, R. & Stankovi, A. M. Interconnection and damping assignment approach to control of PM synchronous motors. IEEE Trans. Contr. Syst. Technol. 9, 811–820 (2001) – 10.1109/87.960344
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Chiasson, J. Modeling and High‐Performance Control of Electric Machines. (2005) doi:10.1002/0471722359 – 10.1002/0471722359
- Mujica, H. & Espinosa-Pérez, G. Control No Lineal Basado en Pasividad de Motores de Inducción para Alto Desempeño Dinámico. Revista Iberoamericana de Automática e Informática Industrial RIAI 11, 32–43 (2014) – 10.1016/j.riai.2013.08.001