Time-space formulation of a conservative string subject to finite transformations
Authors
David Roze, Thomas Hélie, Emmanuelle Rouhaud
Abstract
This paper investigates power-balanced descriptions of the conservative vibrating string. First, the hypotheses of continuum mechanics are recalled for the case of infinitesimal transformations. The string is described by classical partial differential equations (PDEs) and reformulated as a port Hamiltonian system (PHS). Second, the case of finite (possibly large) transformations is considered, for which the time variation of the elastic energy appears to be no longer the elastic power. To naturally solve this difficulty and ensure the invariance of the elastic power with respect to the superposition of rigid body motion, the problem is here addressed in the framework of a time-space formulation. Eulerian and Lagrangian conservative formulations are proposed in the context of non relativistic velocities. This work also yields perspectives for a time-space representation of a port-Hamiltonian vibrating string invariant to the change of observer in a relativistic context.
Keywords
String vibrations; Finite-transformations; Conservation laws; Hamiltonian dynamics; Geometric mechanics; Time-space formulation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 232–237
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.286
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Roze_2024,
title={{Time-space formulation of a conservative string subject to finite transformations}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.286},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Roze, David and Hélie, Thomas and Rouhaud, Emmanuelle},
year={2024},
pages={232--237}
}
References
- Nahas, R. A., Petit, J., Charles, A., Rouhaud, E. & Panicaud, B. On the use of a spacetime modeling for heat equation applied to self-heating computation with comparison to experimental results. Heat and Mass Transfer vol. 57 2045–2066 (2021) – 10.1007/s00231-021-03069-y
- Besson, (2010)
- Bideau, N., Le Marrec, L. & Rakotomanana, L. Influence of a finite strain on vibration of a bounded Timoshenko beam. International Journal of Solids and Structures vol. 48 2265–2274 (2011) – 10.1016/j.ijsolstr.2011.02.007
- Chaigne, (2016)
- Eringen, (1962)
- Golo, G., van der Schaft, A. & Stramigioli, S. Hamiltonian Formulation of Planar Beams. IFAC Proceedings Volumes vol. 36 147–152 (2003) – 10.1016/s1474-6670(17)38882-1
- Grot, R. A. & Eringen, A. C. Relativistic continuum mechanics part I—mechanics and thermodynamics. International Journal of Engineering Science vol. 4 611–638 (1966) – 10.1016/0020-7225(66)90008-5
- Landau, (1975)
- Misner, (1973)
- Panicaud, (2014)
- Panicaud, B. et al. Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry. Acta Mechanica vol. 227 651–675 (2015) – 10.1007/s00707-015-1470-8
- Rouhaud, E., Panicaud, B. & Kerner, R. Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry. Computational Materials Science vol. 77 120–130 (2013) – 10.1016/j.commatsci.2013.04.032
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3