Authors

Henrik Sandberg, Jean-Charles Delvenne, Nigel J. Newton, Sanjoy K. Mitter

Abstract

In this paper, we investigate fundamental limits for physical implementations of the Kalman-Bucy filter for state estimation of a class of linear port-Hamiltonian systems. In particular, for the studied class of systems we show the Kalman-Bucy filter itself is a port-Hamiltonian systems and by invoking the second law of thermodynamics, we can characterize the external power supply needed to generate an optimal state estimate. We also show how the required external power supply can be decreased by allowing the filter to perturb the measured system to a larger extent. Hence, it is possible to decrease the so-called back action of the filter by spending more energy. We illustrate our results using passive electric circuits.

Citation

  • Journal: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)
  • Year: 2014
  • Volume:
  • Issue:
  • Pages: 550–555
  • Publisher: IEEE
  • DOI: 10.1109/allerton.2014.7028503

BibTeX

@inproceedings{Sandberg_2014,
  title={{Thermodynamic costs in implementing Kalman-Bucy filters}},
  DOI={10.1109/allerton.2014.7028503},
  booktitle={{2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton)}},
  publisher={IEEE},
  author={Sandberg, Henrik and Delvenne, Jean-Charles and Newton, Nigel J. and Mitter, Sanjoy K.},
  year={2014},
  pages={550--555}
}

Download the bib file

References

  • Horowitz, J. M. & Sandberg, H. Second-law-like inequalities with information and their interpretations. New J. Phys. 16, 125007 (2014) – 10.1088/1367-2630/16/12/125007
  • Wonham, W. M. On the Separation Theorem of Stochastic Control. SIAM Journal on Control 6, 312–326 (1968) – 10.1137/0306023
  • anderson, Network Analysis and Synthesis A Modern Systems Theory Approach (1973)
  • schaft der a van, Port-Hamiltonian systems: An introductory survey. Proceedings of the International Congress of Mathematicians III Invited Lectures (2006)
  • Delvenne, J.-C. & Sandberg, H. Finite-time thermodynamics of port-Hamiltonian systems. Physica D: Nonlinear Phenomena 267, 123–132 (2014)10.1016/j.physd.2013.07.017
  • sandberg, The observer effect in estimation with physical communication constraints. Proceedings of the 18th IFAC World Congress (2011)
  • Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45, 352–393 (1972) – 10.1007/bf00276494
  • bucy, Filtering for Stochastic Processes with Applications to Guidance (1968)
  • Nyquist, H. Thermal Agitation of Electric Charge in Conductors. Phys. Rev. 32, 110–113 (1928) – 10.1103/physrev.32.110
  • Johnson, J. B. Thermal Agitation of Electricity in Conductors. Phys. Rev. 32, 97–109 (1928) – 10.1103/physrev.32.97
  • Sandberg, H., Delvenne, J.-C. & Doyle, J. C. On Lossless Approximations, the Fluctuation- Dissipation Theorem, and Limitations of Measurements. IEEE Trans. Automat. Contr. 56, 293–308 (2011) – 10.1109/tac.2010.2056450
  • Sagawa, T. & Ueda, M. Nonequilibrium thermodynamics of feedback control. Phys. Rev. E 85, (2012) – 10.1103/physreve.85.021104
  • Horowitz, J. M. & Vaikuntanathan, S. Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 82, (2010) – 10.1103/physreve.82.061120
  • Touchette, H. & Lloyd, S. Information-Theoretic Limits of Control. Phys. Rev. Lett. 84, 1156–1159 (2000) – 10.1103/physrevlett.84.1156
  • Mitter, S. K. & Newton, N. J. Information and Entropy Flow in the Kalman?Bucy Filter. J Stat Phys 118, 145–176 (2005) – 10.1007/s10955-004-8781-9
  • Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. & Dev. 5, 183–191 (1961) – 10.1147/rd.53.0183
  • Sandberg, H., Delvenne, J.-C., Newton, N. J. & Mitter, S. K. Maximum work extraction and implementation costs for nonequilibrium Maxwell’s demons. Phys. Rev. E 90, (2014) – 10.1103/physreve.90.042119