Authors

K. Baazouzi, A-D. Bensalah, S. Drid

Abstract

The major problem of controlling a multi-variable electrical system comes mainly from the lack of information on its structure, which was supposed to always linear, a change in unexpected state may cause system instability, hence the requirement development of a new control structure incorporating nonlinear effects and time-varying phenomena while respecting the desired specifications on their stabilities. A new control scheme for speed induction motors is proposed in the present paper, called “passivity based control (PBC) on the principle of exchange control energy via state feedback was presented it allows to work in several areas. A port-controlled Hamiltonian (PCH) model of the induction motor is deduced to make the interconnection and damping of energy explicit on the scheme. The proposed controller is validated under computational simulations MATLAB.

Citation

  • Journal: 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)
  • Year: 2014
  • Volume:
  • Issue:
  • Pages: 7–10
  • Publisher: IEEE
  • DOI: 10.1109/sta.2014.7086690

BibTeX

@inproceedings{Baazouzi_2014,
  title={{The PBC technical to control the induction motor}},
  DOI={10.1109/sta.2014.7086690},
  booktitle={{2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)}},
  publisher={IEEE},
  author={Baazouzi, K. and Bensalah, A-D. and Drid, S.},
  year={2014},
  pages={7--10}
}

Download the bib file

References

  • Adkins, B. & Harley, R. G. The General Theory of Alternating Current Machines. (Springer US, 1975). doi:10.1007/978-1-4899-2907-5 – 10.1007/978-1-4899-2907-5
  • vas, Electrical Machines and Drives: A Space-Vector Theory Approach. (1992)
  • González, H., Duarte-Mermoud, M. A., Pelissier, I., Travieso-Torres, J. C. & Ortega, R. A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6, 59–68 (2008) – 10.1007/s11768-008-7193-9
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • grellet, Actionneurs Elefctriques -principe modeles cornmande (1999)
  • lesenne, Introduction it I ‘electrotechnique approfondie (1981)
  • Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
  • Ortega, R. & Espinosa, G. Torque regulation of induction motors. Automatica 29, 621–633 (1993) – 10.1016/0005-1098(93)90059-3
  • Sanders, S. R. & Verghese, G. C. Lyapunov-based control for switched power converters. 21st Annual IEEE Conference on Power Electronics Specialists 51–58 doi:10.1109/pesc.1990.131171 – 10.1109/pesc.1990.131171
  • bao, Process Control The Passive Systems Approach (2007)
  • Sira-Ramirez, H. & Ortega, R. Passivity-based controllers for the stabilization of DC-to-DC power converters. Proceedings of 1995 34th IEEE Conference on Decision and Control vol. 4 3471–3476 – 10.1109/cdc.1995.479122
  • Wyatt, J., Chua, L., Gannett, J., Goknar, I. & Green, D. Energy Concepts in the State-Space Theory of Nonlinear n-Ports: Part II - Losslessness. IEEE Trans. Circuits Syst. 29, 417–430 (1982) – 10.1109/tcs.1982.1085180
  • Wyatt, J., Chua, L., Gannett, J., Goknar, I. & Green, D. Energy concepts in the state-space theory of nonlinear n-ports: Part I-Passivity. IEEE Trans. Circuits Syst. 28, 48–61 (1981) – 10.1109/tcs.1981.1084907
  • dalsmo, On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J Contr Optimiz (1999)