The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod
Authors
Jing Li, Raghda A. M. Attia, Mostafa M. A. Khater, Dianchen Lu
Abstract
This research paper extracts novel analytical and semi-analytical wave solutions of the longitudinal wave equation in a magneto-electro-elastic circular rod by using the modified Khater method as one of the most novel and general computational methods and the Adomian decomposition method as a semi-analytical method. The longitudinal waves in metallic thin films are explained for the first time by Nilsson and Lindau, who used the visual evidence. They noted subdued anomalies in the ports of thin ([Formula: see text]100 Å) Ag layers deposited on amorphous silica for p-polarized light at frequencies padlock to the dynamic plasma frequency. These properties are studied by our two suggested methods and are explained by sketching some of our obtained solutions. Moreover, the stability property is tested for our obtained solutions by using the features of the Hamiltonian system. The performance of our used methods shows the power and effectiveness of these methods and their ability to apply on many different forms of nonlinear partial differential equations.
Citation
- Journal: Modern Physics Letters B
- Year: 2020
- Volume: 34
- Issue: 12
- Pages: 2050123
- Publisher: World Scientific Pub Co Pte Ltd
- DOI: 10.1142/s0217984920501237
BibTeX
@article{Li_2020,
title={{The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod}},
volume={34},
ISSN={1793-6640},
DOI={10.1142/s0217984920501237},
number={12},
journal={Modern Physics Letters B},
publisher={World Scientific Pub Co Pte Ltd},
author={Li, Jing and Attia, Raghda A. M. and Khater, Mostafa M. A. and Lu, Dianchen},
year={2020},
pages={2050123}
}
References
- Boswell, R. W. Very efficient plasma generation by whistler waves near the lower hybrid frequency. Plasma Phys. Control. Fusion 26, 1147–1162 (1984) – 10.1088/0741-3335/26/10/001
- Chen, F. F. Plasma ionization by helicon waves. Plasma Phys. Control. Fusion 33, 339–364 (1991) – 10.1088/0741-3335/33/4/006
- Dakss, M. L., Kuhn, L., Heidrich, P. F. & Scott, B. A. GRATING COUPLER FOR EFFICIENT EXCITATION OF OPTICAL GUIDED WAVES IN THIN FILMS. Applied Physics Letters 16, 523–525 (1970) – 10.1063/1.1653091
- Green, R. J. et al. Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21, 1823–1835 (2000) – 10.1016/s0142-9612(00)00077-6
- Alami, J., Gudmundsson, J. T., Bohlmark, J., Birch, J. & Helmersson, U. Plasma dynamics in a highly ionized pulsed magnetron discharge. Plasma Sources Sci. Technol. 14, 525–531 (2005) – 10.1088/0963-0252/14/3/015
- Bensoussan, A. Stochastic Navier-Stokes Equations. Acta Appl Math 38, 267–304 (1995) – 10.1007/bf00996149
- Capiński, M. & Cutland, N. Stochastic Navier-Stokes equations. Acta Appl Math 25, 59–85 (1991) – 10.1007/bf00047665
- Temam, R. Navier–Stokes Equations. (2001) doi:10.1090/chel/343 – 10.1090/chel/343
- Girault V., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (2012)
- Kim, J. & Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics 59, 308–323 (1985) – 10.1016/0021-9991(85)90148-2
- Usadel, K. D. Generalized Diffusion Equation for Superconducting Alloys. Phys. Rev. Lett. 25, 507–509 (1970) – 10.1103/physrevlett.25.507
- Haskell, R. C. et al. Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11, 2727 (1994) – 10.1364/josaa.11.002727
- Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I. & Desjardins, R. L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50, 355–373 (1990) – 10.1007/bf00120530
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Applied Mathematics Letters 9, 23–28 (1996) – 10.1016/0893-9659(96)00089-4
- Wyss, W. The fractional diffusion equation. Journal of Mathematical Physics 27, 2782–2785 (1986) – 10.1063/1.527251
- H.M. Zahran, E. & M.A. Khater, M. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Applied Mathematical Modelling 40, 1769–1775 (2016) – 10.1016/j.apm.2015.08.018
- Aslan, E. C. Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis. Optik 196, 162661 (2019) – 10.1016/j.ijleo.2019.04.008
- Aliyu, A. I., Inc, M., Yusuf, A. & Baleanu, D. Optical solitons and stability analysis with spatio-temporal dispersion in Kerr and quadric-cubic nonlinear media. Optik 178, 923–931 (2019) – 10.1016/j.ijleo.2018.10.046
- Aliyu, A. I., Inc, M., Yusuf, A. & Baleanu, D. A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives. Chaos, Solitons & Fractals 116, 268–277 (2018) – 10.1016/j.chaos.2018.09.043
- Khater, M. M. A., Lu, D. & Zahran, E. H. M. Solitary Wave Solutions of the Benjamin-BonaMahoney-Burgers Equation with Dual Power-Law Nonlinearity. Appl. Math. Inf. Sci. 11, 1347–1351 (2017) – 10.18576/amis/110511
- Yusuf, A., Inc, M., Isa Aliyu, A. & Baleanu, D. Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations. Chaos, Solitons & Fractals 116, 220–226 (2018) – 10.1016/j.chaos.2018.09.036
- Korpinar, Z. & Inc, M. Numerical simulations for fractional variation of (1 + 1)-dimensional Biswas-Milovic equation. Optik 166, 77–85 (2018) – 10.1016/j.ijleo.2018.02.099
- Seadawy, A. R., Lu, D. & Khater, M. M. A. Solitary wave solutions for the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. Journal of Ocean Engineering and Science 2, 137–142 (2017) – 10.1016/j.joes.2017.05.002
- Inc, M. & Baleanu, D. Optical solitons for the Kundu–Eckhaus equation with time dependent coefficient. Optik 159, 324–332 (2018) – 10.1016/j.ijleo.2018.01.084
- Seadawy, A. R., Lu, D. & Khater, M. M. A. Bifurcations of solitary wave solutions for the three dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik 143, 104–114 (2017) – 10.1016/j.ijleo.2017.06.020
- Khater, M. M. A. & Kumar, D. New exact solutions for the time fractional coupled Boussinesq–Burger equation and approximate long water wave equation in shallow water. Journal of Ocean Engineering and Science 2, 223–228 (2017) – 10.1016/j.joes.2017.07.001
- Lu, D., Seadawy, A. R. & Khater, M. M. A. Bifurcations of new multi soliton solutions of the van der Waals normal form for fluidized granular matter via six different methods. Results in Physics 7, 2028–2035 (2017) – 10.1016/j.rinp.2017.06.014
- Seadawy, A. R., Lu, D. & Khater, M. M. A. New wave solutions for the fractional-order biological population model, time fractional burgers, Drinfel’d–Sokolov–Wilson and system of shallow water wave equations and their applications. European Journal of Computational Mechanics 26, 508–524 (2017) – 10.1080/17797179.2017.1374233
- Khater, M. M. A., Seadawy, A. R. & Lu, D. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation. Results in Physics 7, 2325–2333 (2017) – 10.1016/j.rinp.2017.06.049
- Kaplan, M., Akbulut, A. & Bekir, A. Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method. Zeitschrift für Naturforschung A 70, 969–974 (2015) – 10.1515/zna-2015-0122
- Akbulut, A., Kaplan, M. & Bekir, A. Auxiliary Equation Method for Fractional Differential Equations with Modified Riemann–Liouville Derivative. International Journal of Nonlinear Sciences and Numerical Simulation 17, 413–420 (2016) – 10.1515/ijnsns-2016-0023
- Taşcan F., Appl. Math. Comput. (2009)
- Bekir, A. On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation. Communications in Nonlinear Science and Numerical Simulation 14, 1038–1042 (2009) – 10.1016/j.cnsns.2008.03.014
- Guner, O. & Bekir, A. Bright and dark soliton solutions for some nonlinear fractional differential equations. Chinese Phys. B 25, 030203 (2016) – 10.1088/1674-1056/25/3/030203
- Bekir, A. & Cevikel, A. C. New exact travelling wave solutions of nonlinear physical models. Chaos, Solitons & Fractals 41, 1733–1739 (2009) – 10.1016/j.chaos.2008.07.017
- Bekir, A., Aksoy, E. & Cevikel, A. C. Exact solutions of nonlinear time fractional partial differential equations by sub‐equation method. Math Methods in App Sciences 38, 2779–2784 (2014) – 10.1002/mma.3260
- Bekir, A. Application of the Exp-function method for nonlinear differential-difference equations. Applied Mathematics and Computation 215, 4049–4053 (2010) – 10.1016/j.amc.2009.12.003
- Seadawy, A. R., Lu, D. & Khater, M. M. A. Bifurcations of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chinese Journal of Physics 55, 1310–1318 (2017) – 10.1016/j.cjph.2017.07.005
- Khater, M. M. A., Lu, D. & Attia, R. A. M. Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Advances 9, (2019) – 10.1063/1.5087647
- Attia R. A., Math. Comput. Appl. (2019)
- Attia R. A., To Phys. J. (2018)
- Khater, M. M. A., Attia, R. A. M. & Lu, D. Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Entropy 21, 397 (2019) – 10.3390/e21040397
- Khater M., Math. Comput. Appl. (2019)
- Hamoud, A. A. & Ghadle, K. P. Modified Adomian Decomposition Method for Solving Fuzzy Volterra-Fredholm Integral Equation. JIMS 85, 53 (2018) – 10.18311/jims/2018/16260
- Keskin, A. Ü. Adomian Decomposition Method (ADM). Boundary Value Problems for Engineers 311–359 (2019) doi:10.1007/978-3-030-21080-9_7 – 10.1007/978-3-030-21080-9_7
- Ali, N., Ahmad, S., Aziz, S. & Zaman, G. THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING HIV INFECTION MODEL OF LATENTLY INFECTED CELLS. Matrix sci. math. 3, 05–08 (2019) – 10.26480/msmk.01.2019.05.08
- Mak, M. K., Leung, C. S. & Harko, T. Computation of the General Relativistic Perihelion Precession and of Light Deflection via the Laplace-Adomian Decomposition Method. Advances in High Energy Physics 2018, 1–15 (2018) – 10.1155/2018/7093592
- Gao B., Chem. Papers (2019)
- Hosseini, K., Samadani, F., Kumar, D. & Faridi, M. New optical solitons of cubic-quartic nonlinear Schrödinger equation. Optik 157, 1101–1105 (2018) – 10.1016/j.ijleo.2017.11.124
- Baskonus, H. M., Bulut, H. & Atangana, A. On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod. Smart Mater. Struct. 25, 035022 (2016) – 10.1088/0964-1726/25/3/035022
- Triki, H. et al. Gray and black optical solitons with quintic nonlinearity. Optik 154, 354–359 (2018) – 10.1016/j.ijleo.2017.10.043
- Zhang Q., J. Adv. Appl. Math. (2019)
- Swaters, G. E. Introduction to Hamiltonian Fluid Dynamics and Stability Theory. (Chapman and Hall/CRC, 2019). doi:10.1201/9780203750087 – 10.1201/9780203750087
- Seadawy, A. R. & Manafian, J. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod. Results in Physics 8, 1158–1167 (2018) – 10.1016/j.rinp.2018.01.062