Authors

Jerrold E. Marsden, Alan Weinstein

Abstract

Morrison [25] has observed that the Maxwell-Vlasov and Poisson-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisson bracket. We derive another Poisson structure for these equations by using general methods of symplectic geometry. The main ingredients in our construction are the symplectic structure on the co-adjoint orbits for the group of canonical transformations, and the symplectic structure for the phase space of the electromagnetic field regarded as a gauge theory. Our Poisson bracket satisfies the Jacobi identity, whereas Morrison’s does not [37]. Our construction also shows where canonical variables can be found and can be applied to the Yang-Mills-Vlasov equations and to electromagnetic fluid dynamics.

Citation

  • Journal: Physica D: Nonlinear Phenomena
  • Year: 1982
  • Volume: 4
  • Issue: 3
  • Pages: 394–406
  • Publisher: Elsevier BV
  • DOI: 10.1016/0167-2789(82)90043-4

BibTeX

@article{Marsden_1982,
  title={{The Hamiltonian structure of the Maxwell-Vlasov equations}},
  volume={4},
  ISSN={0167-2789},
  DOI={10.1016/0167-2789(82)90043-4},
  number={3},
  journal={Physica D: Nonlinear Phenomena},
  publisher={Elsevier BV},
  author={Marsden, Jerrold E. and Weinstein, Alan},
  year={1982},
  pages={394--406}
}

Download the bib file

References

  • Abraham, (1978)
  • Adler, On a trace functional for formal pseudodifferential operators and symplectic structure of the Korteweg-de Vries equation. (1979)
  • Adler, M. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations. Invent Math 50, 219–248 (1978) – 10.1007/bf01410079
  • Arms, J. M. Linearization stability of gravitational and gauge fields. Journal of Mathematical Physics 20, 443–453 (1979) – 10.1063/1.524094
  • Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966) – 10.5802/aif.233
  • Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1978). doi:10.1007/978-1-4757-1693-1 – 10.1007/978-1-4757-1693-1
  • Batt, J. Global symmetric solutions of the initial value problem of stellar dynamics. Journal of Differential Equations 25, 342–364 (1977) – 10.1016/0022-0396(77)90049-3
  • Białynicki-Birula, I. & Iwiński, Z. Canonical formulation of relativistic hydrodynamics. Reports on Mathematical Physics 4, 139–151 (1973) – 10.1016/0034-4877(73)90019-0
  • Bialynicki-Birula, (1981)
  • Born, On the quantization of the new field theory. (1935)
  • Braun, W. & Hepp, K. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun.Math. Phys. 56, 101–113 (1977) – 10.1007/bf01611497
  • Davidson, (1972)
  • Ebin, D. G. & Marsden, J. Groups of Diffeomorphisms and the Motion of an Incompressible Fluid. The Annals of Mathematics 92, 102 (1970) – 10.2307/1970699
  • Guillemin, Geometric asymptotics. (1977)
  • Guillemin, On the equations of motion of a classical particle in a Yang-Mills field and the principle of general covariance. Hadronic J. (1978)
  • Guillemin, V. & Sternberg, S. The moment map and collective motion. Annals of Physics 127, 220–253 (1980) – 10.1016/0003-4916(80)90155-4
  • Holm, (1981)
  • Holmes, P. & Marsden, J. A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam. Arch. Rational Mech. Anal. 76, 135–165 (1981) – 10.1007/bf00251249
  • Horst, On the existence of global classical solutions of the initial values problem of stellar dynamics. (1980)
  • Horst, (1980)
  • Kato, T. Quasi-linear equations of evolution, with applications to partial differential equations. Lecture Notes in Mathematics 25–70 (1975) doi:10.1007/bfb0067080 – 10.1007/bfb0067080
  • Marsden, (1981)
  • Marsden, J. & Weinstein, A. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics 5, 121–130 (1974) – 10.1016/0034-4877(74)90021-4
  • Marsden, (1982)
  • Maslov, (1976)
  • Morrison, P. J. The Maxwell-Vlasov equations as a continuous hamiltonian system. Physics Letters A 80, 383–386 (1980) – 10.1016/0375-9601(80)90776-8
  • Morrison, (1981)
  • Morrison, P. J. & Greene, J. M. Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. Phys. Rev. Lett. 45, 790–794 (1980) – 10.1103/physrevlett.45.790
  • Pauli, (1933)
  • Percival, I. C. A variational principle for invariant tori of fixed frequency. J. Phys. A: Math. Gen. 12, L57–L60 (1979) – 10.1088/0305-4470/12/3/001
  • Ratiu, T. On the smoothness of the time t-map of the KdV equation and the bifurcation of the eigenvalues of Hill’s operator. Lecture Notes in Mathematics 248–294 (1979) doi:10.1007/bfb0069808 – 10.1007/bfb0069808
  • Ratiu, Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. (1981)
  • Ratiu, T. & Schmid, R. The differentiable structure of three remarkable diffeomorphism groups. Math Z 177, 81–100 (1981) – 10.1007/bf01214340
  • Ukai-Okabe, On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math. (1978)
  • Van Hove, Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique. Acad. Roy. Belgique, Bull. Cl. Sci. (1981)
  • Weinstein, A. Bifurcations and Hamilton’s principle. Math Z 159, 235–248 (1978) – 10.1007/bf01214573
  • Weinstein, A. A universal phase space for particles in Yang-Mills fields. Lett Math Phys 2, 417–420 (1978) – 10.1007/bf00400169
  • Weinstein, A. & Morrison, P. J. Comments on: The Maxwell-Vlasov equations as a continuous hamiltonian system. Physics Letters A 86, 235–236 (1981) – 10.1016/0375-9601(81)90496-5
  • Wollman, S. The spherically symmetric Vlasov-Poisson system. Journal of Differential Equations 35, 30–35 (1980) – 10.1016/0022-0396(80)90046-7
  • Wollman, S. Global‐in‐time solutions of the two‐dimensional vlasov‐poisson systems. Comm Pure Appl Math 33, 173–197 (1980) – 10.1002/cpa.3160330205
  • Berezin, F. A. Some remarks about the associated envelope of a Lie algebra. Funct Anal Its Appl 1, 91–102 (1968) – 10.1007/bf01076082
  • Gibbons, Physica (1981)