Authors

D. Lewis, J. Marsden, R. Montgomery, T. Ratiu

Abstract

Hamiltonian structures for 2- or 3-dimensional incompressible flows with a free boundary are determined which generalize a previous structure of Zakharov for irrotational flow. Our Poisson bracket is determined using the method of Arnold, namely reduction from canonical variables in the Lagrangian (material) description. Using this bracket, the Hamiltonian form for the equations of a liquid drop with a free boundary having surface tension is demonstrated. The structure of the bracket in terms of a reduced cotangent bundle of a principal bundle is explained. In the case of two-dimensional flows, the vorticity bracket is determined and the generalized enstrophy is shown to be a Casimir function. This investigation also clears up some confusion in the literature concerning the vorticity bracket, even for fixed boundary flows.

Citation

  • Journal: Physica D: Nonlinear Phenomena
  • Year: 1986
  • Volume: 18
  • Issue: 1-3
  • Pages: 391–404
  • Publisher: Elsevier BV
  • DOI: 10.1016/0167-2789(86)90207-1

BibTeX

@article{Lewis_1986,
  title={{The Hamiltonian structure for dynamic free boundary problems}},
  volume={18},
  ISSN={0167-2789},
  DOI={10.1016/0167-2789(86)90207-1},
  number={1–3},
  journal={Physica D: Nonlinear Phenomena},
  publisher={Elsevier BV},
  author={Lewis, D. and Marsden, J. and Montgomery, R. and Ratiu, T.},
  year={1986},
  pages={391--404}
}

Download the bib file

References

  • Zakharov, Stability of periodic waves of finite amplitude on surface of a deep fluid. J. Prikl. Mekh. Tekhn. Fiziki (1968)
  • Miles, J. W. Hamiltonian formulations for surface waves. Applied Scientific Research 37, 103–110 (1981) – 10.1007/bf00382621
  • Miles, J. W. On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153–158 (1977) – 10.1017/s0022112077001104
  • Benjamin, T. B. & Olver, P. J. Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137 (1982) – 10.1017/s0022112082003292
  • Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966) – 10.5802/aif.233
  • Marsden, J. & Weinstein, A. Reduction of symplectic manifolds with symmetry. Reports on Mathematical Physics 5, 121–130 (1974) – 10.1016/0034-4877(74)90021-4
  • Marsden, The Hamiltonian structure of the Maxwell-Vlasov equations. Physica (1982)
  • Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica (1983)
  • Marsden, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. (1982)
  • Atti della Academia della Scienze di Torino (1983)
  • Marsden, J. E., Raţiu, T. & Weinstein, A. Semidirect products and reduction in mechanics. Trans. Amer. Math. Soc. 281, 147–177 (1984) – 10.1090/s0002-9947-1984-0719663-1
  • Marsden, J. E., Ratiu, T. & Weinstein, A. Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Contemporary Mathematics 55–100 (1984) doi:10.1090/conm/028/751975 – 10.1090/conm/028/751975
  • Montgomery, R., Marsden, J. & Ratiu, T. Gauged Lie-Poisson structures. Contemporary Mathematics 101–114 (1984) doi:10.1090/conm/028/751976 – 10.1090/conm/028/751976
  • Kummer, M. Indiana Univ. Math. J. 30, 281 (1981) – 10.1512/iumj.1981.30.30022
  • Krishnaprasad, P. S. & Marsden, J. E. Hamiltonian structures and stability for rigid bodies with flexible attachments. Arch. Rational Mech. Anal. 98, 71–93 (1987) – 10.1007/bf00279963
  • Guillemin, (1984)
  • Montgomery, R. Canonical formulations of a classical particle in a Yang-Mills field and Wong’s equations. Lett Math Phys 8, 59–67 (1984) – 10.1007/bf00420042
  • (1984)
  • Holm, D. D. & Kupershmidt, B. A. Relativistic fluid dynamics as a Hamiltonian system. Physics Letters A 101, 23–26 (1984) – 10.1016/0375-9601(84)90083-5
  • Bao, D., Marsden, J. & Walton, R. The Hamiltonian structure of general relativistic perfect fluids. Commun.Math. Phys. 99, 319–345 (1985) – 10.1007/bf01240351
  • Holm, Hamiltonian Formalism for General Relativistic Adiabatic Fluids. Physica (1985)
  • Arnold, Conditions for nonlinear stability of the stationary plane curvilinear flows of an ideal fluid. Doklady Mat. Nauk. (1965)
  • Sedenko, Stability of steady flows of ideal incompressible fluid with free boundary. Prikl. Math. & Mekh. (1978)
  • Sedenko, V. I. & Iudovich, V. I. Stability of steady flows of perfect incompressible fluid with a free boundary. Journal of Applied Mathematics and Mechanics 42, 1148–1155 (1978) – 10.1016/0021-8928(78)90064-3
  • Artale, V. & Salusti, E. Hydrodynamic stability of rotational gravity waves. Phys. Rev. A 29, 2787–2788 (1984) – 10.1103/physreva.29.2787
  • Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Physics Reports 123, 1–116 (1985) – 10.1016/0370-1573(85)90028-6
  • Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A 318, 349–409 (1986) – 10.1098/rsta.1986.0078
  • Ebin, D. G. & Marsden, J. Groups of Diffeomorphisms and the Motion of an Incompressible Fluid. The Annals of Mathematics 92, 102 (1970) – 10.2307/1970699
  • Brown, The shape and stability of rotating liquid drops. (1980)
  • Olver, P. Hamiltonian perturbation theory and water waves. Contemporary Mathematics 231–249 (1984) doi:10.1090/conm/028/751987 – 10.1090/conm/028/751987
  • Olver, P. J. Conservation laws of free boundary problems and the classification of conservation laws for water waves. Trans. Amer. Math. Soc. 277, 353–380 (1983) – 10.1090/s0002-9947-1983-0690057-x
  • Benjamin, The stability of the plane surface of a liquid in vertical periodic motion. (1954)
  • BENJAMIN, T. B. Impulse, Flow Force and Variational Principles. IMA J Appl Math 32, 3–68 (1984) – 10.1093/imamat/32.1-3.3
  • Miles, J. W. Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419 (1976) – 10.1017/s002211207600030x
  • Holmes, P. & Marsden, J. A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam. Arch. Rational Mech. Anal. 76, 135–165 (1981) – 10.1007/bf00251249
  • Cantor, Some problems of global analysis on asymptotically simple manifolds. Comp. Math. (1979)
  • Marsden, (1983)