Authors

Mohamed Becherif

Abstract

Induction machines (IM) constitute a theoretically interesting and practically important class of nonlinear systems. They are frequently used as wind generators for their power/cost ratio. They are described by a fifth‐order nonlinear differential equation with two inputs and only three state variables available for measurement. The control task is further complicated by the fact that IM are subject to unknown (load) disturbances and the parameters can be of great uncertainty. One is then faced with the challenging problem of controlling a highly nonlinear system, with unknown time‐varying parameters, where the regulated output, besides being unmeasurable, is perturbed by an unknown additive signal. Passivity‐based control (PBC) is a well‐established structure‐preserving design methodology which has shown to be very powerful to design robust controllers for physical systems described by Euler‐Lagrange equations of motion. PBCs provide a natural procedure to “shape” the potential energy yielding controllers with a clear physical interpretation in terms of interconnection of the system with its environment and are robust vis á vis to unmodeled dissipative effects. One recent approach of PBC is the Interconnection and Damping Assignment Passivity‐Based Control (IDA‐PBC) which is a very useful technique to control nonlinear systems assigning a desired (Port‐Controlled Hamiltonian) structure to the closed‐loop. The aim of this paper is to give a survey on different PBC of IM. The originality of this work is that the author proves that the well known field oriented control of IM is a particular case of the IDA‐PBC with disturbance.

Citation

  • Journal: Asian Journal of Control
  • Year: 2019
  • Volume: 21
  • Issue: 4
  • Pages: 2137–2154
  • Publisher: Wiley
  • DOI: 10.1002/asjc.1957

BibTeX

@article{Becherif_2018,
  title={{Survey on Passivity Based Control of Induction Machine}},
  volume={21},
  ISSN={1934-6093},
  DOI={10.1002/asjc.1957},
  number={4},
  journal={Asian Journal of Control},
  publisher={Wiley},
  author={Becherif, Mohamed},
  year={2018},
  pages={2137--2154}
}

Download the bib file

References

  • Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
  • Ortega R., Communications and Control Engineering (1998)
  • Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
  • Nicklasson, P. J., Ortega, R., Espinosa-Perez, G. & Jacobi, C. G. J. Passivity-based control of a class of Blondel-Park transformable electric machines. IEEE Trans. Automat. Contr. 42, 629–647 (1997) – 10.1109/9.580867
  • Benmouna, A., Becherif, M., Depernet, D. & Ebrahim, M. A. Novel Energy Management Technique for Hybrid Electric Vehicle via Interconnection and Damping Assignment Passivity Based Control. Renewable Energy 119, 116–128 (2018) – 10.1016/j.renene.2017.11.051
  • Becherif M., Stability and robustness of disturbed‐port controlled hamiltonian systems with dissipation,. IFAC World Congress, (2005)
  • Schaft A. J., Port‐controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems,. J. Soc. Instrum. Control Eng. Japan (SICE) (2000)
  • Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992)10.1016/s1474-6670(17)52308-3
  • Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
  • Maschke, B. M. J., Ortega, R., van der Schaft, A. J. & Escobar, G. An energy-based derivation of lyapunov functions for forced systems with application to stabilizing control. IFAC Proceedings Volumes 32, 2534–2539 (1999) – 10.1016/s1474-6670(17)56431-9
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • Escobar, G., Ortega, R. & Praly, L. A New Lyapunov Function for Field Oriented Control of Induction Motors. IFAC Proceedings Volumes 30, 447–449 (1997) – 10.1016/s1474-6670(17)41224-9
  • Duarte‐Mermoud, M. A., Travieso‐Torres, J. C., Pelissier, I. S. & González, H. A. Induction motor control based on adaptive passivity. Asian Journal of Control 14, 67–84 (2010) – 10.1002/asjc.260
  • Khattara A., New connection of DFIG wind turbines to the grid to minimize converter number,. Int. J. Emerg. Elec. Power Syst. (2017)
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Shojaei, K. & Chatraei, A. A Saturating Extension of an Output Feedback Controller for Internally Damped Euler‐Lagrange Systems. Asian Journal of Control 17, 2175–2187 (2015) – 10.1002/asjc.1115
  • Mocanu, R. & Onea, A. Robust Control of Permanent Magnet Synchronous Machine Based on Passivity Theory. Asian Journal of Control 20, 2034–2041 (2017) – 10.1002/asjc.1699
  • Liu, X. Z., Verghese, G. C., Lang, J. H. & Onder, M. K. Generalizing the Blondel-Park transformation of electrical machines: necessary and sufficient conditions. IEEE Trans. Circuits Syst. 36, 1058–1067 (1989) – 10.1109/31.192414
  • Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G. & Ortega, R. Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. International Journal of Control 82, 241–255 (2009) – 10.1080/00207170802050817
  • Karagiannis, D., Astolfi, A., Ortega, R. & Hilairet, M. A Nonlinear Tracking Controller for Voltage-Fed Induction Motors With Uncertain Load Torque. IEEE Trans. Contr. Syst. Technol. 17, 608–619 (2009) – 10.1109/tcst.2008.2002320
  • Yu, H., Yu, J., Liu, J. & Song, Q. Nonlinear control of induction motors based on state error PCH and energy-shaping principle. Nonlinear Dyn 72, 49–59 (2012) – 10.1007/s11071-012-0689-3
  • Yu H., Energy‐shaping and L2 gain disturbance attenuation control of induction motor,. Int. J. Innov. Comput. Inf. Control (2012)
  • Ortega, R. & Spong, M. W. Stabilization of Underactuated Mechanical Systems Via Interconnection and Damping Assignment. IFAC Proceedings Volumes 33, 69–74 (2000) – 10.1016/s1474-6670(17)35549-0
  • Delaleau E., Modeling and control of induction motors,. Int. J. Appl. Math. Comput. Sci. (2001)