Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach
Authors
Michael Günther, Birgit Jacob, Claudia Totzeck
Abstract
We present a gradient-based calibration algorithm to identify a port-Hamiltonian system from given time-domain input-output data. The gradient is computed with the help of sensitivities and the algorithm is tailored such that the structure of the system matrices of the port-Hamiltonian system (skew-symmetry and positive semi-definitness) is preserved in each iteration of the algorithm. As we only require input-output data, we need to calibrate the initial condition of the internal state of the port-Hamiltonian system as well. Numerical results with synthetic data show the feasibility of the approach.
Citation
- ISBN: 9783031545160
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-54517-7_19
- Note: International Conference on Scientific Computing in Electrical Engineering
BibTeX
@inbook{G_nther_2024,
title={{Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach}},
ISBN={9783031545177},
ISSN={2198-3283},
DOI={10.1007/978-3-031-54517-7_19},
booktitle={{Scientific Computing in Electrical Engineering}},
publisher={Springer Nature Switzerland},
author={Günther, Michael and Jacob, Birgit and Totzeck, Claudia},
year={2024},
pages={167--174}
}
References
- Benner, P., Goyal, P. & Van Dooren, P. Identification of port-Hamiltonian systems from frequency response data. Systems & Control Letters 143, 104741 (2020) – 10.1016/j.sysconle.2020.104741
- K Cherifi, Electron. Trans. Numer. Anal. Special Issue SciML (2022)
- Modeling and Control of Complex Physical Systems (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- M Hinze, Optimization with PDE Constraints (2009)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65