Authors

Markus Clemens, Marvin-Lucas Henkel, Fotios Kasolis, Michael Günther

Abstract

Electromagneto-quasistatic (EMQS) field formulations allow to model resistive, capacitive, and inductive field effects while neglecting wave propagation. These field formulations are based on the Darwin-Ampére equation and yield different approximations of the full set of Maxwell’s equations depending on the choice of additional equations. Various discrete EMQS formulations are analyzed using the port-Hamiltonian system framework. It is shown that only combinations of the Darwin-Ampere equation and the Maxwell continuity equation yield port-Hamiltonian differential-algebraic system of equations (pH-DAE) which implies their numerical stability, energy conservation related to a specific EMQS variant of the Hamiltonian and dissipativity results.

Citation

  • Journal: 2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC)
  • Year: 2024
  • Volume:
  • Issue:
  • Pages: 1–2
  • Publisher: IEEE
  • DOI: 10.1109/cefc61729.2024.10585831

BibTeX

@inproceedings{Clemens_2024,
  title={{Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework}},
  DOI={10.1109/cefc61729.2024.10585831},
  booktitle={{2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC)}},
  publisher={IEEE},
  author={Clemens, Markus and Henkel, Marvin-Lucas and Kasolis, Fotios and Günther, Michael},
  year={2024},
  pages={1--2}
}

Download the bib file

References

  • Darwin, C. G. LI. The dynamical motions of charged particles. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 39 537–551 (1920) – 10.1080/14786440508636066
  • Koch, S., Schneider, H. & Weiland, T. A Low-Frequency Approximation to the Maxwell Equations Simultaneously Considering Inductive and Capacitive Phenomena. IEEE Transactions on Magnetics vol. 48 511–514 (2012) – 10.1109/tmag.2011.2173163
  • Henkel, M.-L., Kasolis, F. & Clemens, M. A Gradient-Divergence Operator-Regularized Electromagneto-Quasistatic Field Formulation. IEEE Transactions on Magnetics vol. 60 1–4 (2024) – 10.1109/tmag.2023.3333943
  • Kaimori, H., Mifune, T. & Kameari, A. Investigation of Darwin Model with Two Types of Coulomb Gauge Condition in Frequency-Domain Electromagnetic Finite-Element Method. Mathematics in Industry 463–469 (2022) doi:10.1007/978-3-031-11818-0_60 – 10.1007/978-3-031-11818-0_60
  • Henkel, M.-L., Kasolis, F., Clemens, M., Gunther, M. & Schops, S. Implicit Gauging of Electromagneto-Quasistatic Field Formulations. IEEE Transactions on Magnetics vol. 58 1–4 (2022) – 10.1109/tmag.2022.3187869
  • WEILAND, T. TIME DOMAIN ELECTROMAGNETIC FIELD COMPUTATION WITH FINITE DIFFERENCE METHODS. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields vol. 9 295–319 (1996) – 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
  • Zhao, Y. & Tang, Z. A Novel Gauged Potential Formulation for 3-D Electromagnetic Field Analysis Including Both Inductive and Capacitive Effects. IEEE Transactions on Magnetics vol. 55 1–5 (2019) – 10.1109/tmag.2019.2899288
  • Badics, Z., Pávó, J., Bilicz, S. & Gyimóthy, S. Finite-Element A-V Formulation for EMQS Problems via Two-Domain Continuity Gauging. IEEE Transactions on Magnetics vol. 59 1–4 (2023) – 10.1109/tmag.2023.3244722
  • Kaimori, H., Mifune, T., Kameari, A. & Wakao, S. Low-Frequency Stabilized Formulations of Darwin Model in Time-Domain Electromagnetic Finite-Element Method. IEEE Transactions on Magnetics vol. 60 1–5 (2024) – 10.1109/tmag.2023.3304998
  • Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-110.1007/978-3-0348-0399-1