Authors

Manuel Lanchares, Wassim M. Haddad

Abstract

In this paper, we develop an energy-based dynamical system model driven by a Markov input process to present a unified framework for stochastic thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic dissipativity, losslessness and accumulativity theory, we develop a nonlinear stochastic port-Hamiltonian system model characterized by energy conservation and entropy non-conservation laws that are consistent with statistical thermodynamic principles. In particular, we show that the difference between the average stored system energy and the average supplied system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration, whereas the difference between average system entropy production and the average system entropy consumption is a submartingale with respect to the system filtration. This article is part of the theme issue ‘Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)’.

Citation

  • Journal: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  • Year: 2023
  • Volume: 381
  • Issue: 2256
  • Pages:
  • Publisher: The Royal Society
  • DOI: 10.1098/rsta.2022.0284

BibTeX

@article{Lanchares_2023,
  title={{Stochastic thermodynamics: dissipativity, accumulativity, energy storage and entropy production}},
  volume={381},
  ISSN={1471-2962},
  DOI={10.1098/rsta.2022.0284},
  number={2256},
  journal={Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  publisher={The Royal Society},
  author={Lanchares, Manuel and Haddad, Wassim M.},
  year={2023}
}

Download the bib file

References

  • Onsager, L. Reciprocal Relations in Irreversible Processes. I. Physical Review vol. 37 405–426 (1931) – 10.1103/physrev.37.405
  • Onsager, L. Reciprocal Relations in Irreversible Processes. II. Physical Review vol. 38 2265–2279 (1931) – 10.1103/physrev.38.2265
  • de Groot SR. de Groot SR. 1951 Thermodynamics of irreversible processes. Amsterdam, The Netherlands: North-Holland. (1951)
  • Prigogine I. Prigogine I. 1955 Thermodynamics of irreversible processes. New York, NY: Interscience. (1955)
  • Sekimoto, K. Kinetic Characterization of Heat Bath and the Energetics of Thermal Ratchet Models. Journal of the Physical Society of Japan vol. 66 1234–1237 (1997) – 10.1143/jpsj.66.1234
  • Sekimoto, K. Langevin Equation and Thermodynamics. Progress of Theoretical Physics Supplement vol. 130 17–27 (1998) – 10.1143/ptps.130.17
  • Sekimoto, K. Stochastic Energetics. Lecture Notes in Physics (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-05411-2 – 10.1007/978-3-642-05411-2
  • Seifert, U. Stochastic thermodynamics: principles and perspectives. The European Physical Journal B vol. 64 423–431 (2008) – 10.1140/epjb/e2008-00001-9
  • Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics vol. 75 126001 (2012) – 10.1088/0034-4885/75/12/126001
  • Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik vol. 322 549–560 (1905) – 10.1002/andp.19053220806
  • Jüttner, F. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie. Annalen der Physik vol. 339 856–882 (1911) – 10.1002/andp.19113390503
  • Rajpurohit, T. & Haddad, W. M. Stochastic Thermodynamics: A Dynamical Systems Approach. Entropy vol. 19 693 (2017) – 10.3390/e19120693
  • Peliti L. Peliti L, Pigolotti S. 2021 Stochastic thermodynamics: an introduction. Princeton, NJ: Princeton University Press. (2021)
  • Haddad WM. Haddad WM. 2019 A dynamical systems theory of thermodynamics. Princeton, NJ: Princeton University Press. (2019)
  • Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
  • Willems JC. Willems JC. 1972 Dissipative dynamical systems, Part II: quadratic supply rates. Arch. Ration. Mech. Anal. 45, 359-393. (doi:10.1007/BF00276494) (1972)
  • Haddad, W. M. & Chellaboina, V. Nonlinear Dynamical Systems and Control. (2008) doi:10.1515/9781400841042 – 10.1515/9781400841042
  • Rajpurohit, T. & Haddad, W. M. Dissipativity Theory for Nonlinear Stochastic Dynamical Systems. IEEE Transactions on Automatic Control vol. 62 1684–1699 (2017) – 10.1109/tac.2016.2598474
  • Lanchares, M. & Haddad, W. M. Dissipative stochastic dynamical systems. Systems & Control Letters vol. 172 105451 (2023) – 10.1016/j.sysconle.2022.105451
  • Le Gall, J.-F. Brownian Motion, Martingales, and Stochastic Calculus. Graduate Texts in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-31089-3 – 10.1007/978-3-319-31089-3
  • Klebaner, F. C. Introduction to Stochastic Calculus with Applications. (IMPERIAL COLLEGE PRESS, 2012). doi:10.1142/p821 – 10.1142/p821
  • Øksendal B. Øksendal B. 2013 Stochastic differential equations: an introduction with applications, 6th edn. Heidelberg, Germany: Springer. (2013)
  • Mao X. Mao X. 2007 Stochastic differential equations and applications, 2nd edn. Cambridge, UK: Woodhead Publishing. (2007)
  • Fleming WH. Fleming WH, Soner HM. 2006 Controlled Markov processes and viscosity solutions, 2nd edn.New York, NY: Springer. (2006)
  • Billingsley P. Billingsley P. 2012 Probability and measure, Anniversary edn. Hoboken, NJ: John Wiley & Sons. (2012)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Haddad, W. M., Rajpurohit, T. & Jin, X. Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica vol. 97 134–142 (2018) – 10.1016/j.automatica.2018.07.031
  • Cordoni, F., Di Persio, L. & Muradore, R. Stochastic Port-Hamiltonian Systems. Journal of Nonlinear Science vol. 32 (2022)10.1007/s00332-022-09853-2
  • van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
  • Haddad, W. M., Chellaboina, V. & Hui, Q. Nonnegative and Compartmental Dynamical Systems. (Princeton University Press, 2010). doi:10.1515/9781400832248 – 10.1515/9781400832248
  • Rajpurohit, T. & Haddad, W. M. Lyapunov and converse Lyapunov theorems for stochastic semistability. Systems & Control Letters vol. 97 83–90 (2016) – 10.1016/j.sysconle.2016.08.010