Authors

Ahmad Taher Azar, Fernando E. Serrano

Abstract

In this study, the design of an adaptive terminal sliding mode controller for the stabilization of port Hamiltonian chaotic systems with hidden attractors is proposed. This study begins with the design methodology of a chaotic oscillator with a hidden attractor implementing the topological framework for its respective design. With this technique it is possible to design a 2-D chaotic oscillator, which is then converted into port-Hamiltonia to track and analyze these models for the stabilization of the hidden chaotic attractors created by this analysis. Adaptive terminal sliding mode controllers (ATSMC) are built when a Hamiltonian system has a chaotic behavior and a hidden attractor is detected. A Lyapunov approach is used to formulate the adaptive device controller by creating a control law and the adaptive law, which are used online to make the system states stable while at the same time suppressing its chaotic behavior. The empirical tests obtaining the discussion and conclusions of this thesis should verify the theoretical findings.

Citation

  • Journal: Entropy
  • Year: 2020
  • Volume: 22
  • Issue: 1
  • Pages: 122
  • Publisher: MDPI AG
  • DOI: 10.3390/e22010122

BibTeX

@article{Azar_2020,
  title={{Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control}},
  volume={22},
  ISSN={1099-4300},
  DOI={10.3390/e22010122},
  number={1},
  journal={Entropy},
  publisher={MDPI AG},
  author={Azar, Ahmad Taher and Serrano, Fernando E.},
  year={2020},
  pages={122}
}

Download the bib file

References

  • Vaidyanathan, S. & Azar, A. T. Qualitative Study and Adaptive Control of a Novel 4-D Hyperchaotic System with Three Quadratic Nonlinearities. Studies in Fuzziness and Soft Computing 179–202 (2016) doi:10.1007/978-3-319-30340-6_8 – 10.1007/978-3-319-30340-6_8
  • Vaidyanathan, S. & Azar, A. T. Generalized Projective Synchronization of a Novel Hyperchaotic Four-Wing System via Adaptive Control Method. Studies in Fuzziness and Soft Computing 275–296 (2016) doi:10.1007/978-3-319-30340-6_12 – 10.1007/978-3-319-30340-6_12
  • Azar, A. T. et al. A Novel Chaotic System without Equilibrium: Dynamics, Synchronization, and Circuit Realization. Complexity vol. 2017 1–11 (2017) – 10.1155/2017/7871467
  • Ouannas, A., Azar, A. T. & Abu-Saris, R. A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics vol. 8 1887–1894 (2016) – 10.1007/s13042-016-0566-3
  • Taher Azar, A., Adele, N. M., Tewa Alain, K. S., Kengne, R. & Bertrand, F. H. Multistability Analysis and Function Projective Synchronization in Relay Coupled Oscillators. Complexity vol. 2018 (2018) – 10.1155/2018/3286070
  • Vaidyanathan, S. et al. A Novel Hyperchaotic System With Adaptive Control, Synchronization, and Circuit Simulation. Advances in Systems Analysis, Software Engineering, and High Performance Computing 382–419 (2018) doi:10.4018/978-1-5225-4077-9.ch013 – 10.4018/978-1-5225-4077-9.ch013
  • Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence (Springer International Publishing, 2017). doi:10.1007/978-3-319-50249-6 – 10.1007/978-3-319-50249-6
  • Vaidyanathan, S. et al. A memristor-based system with hidden hyperchaotic attractors, its circuit design, synchronisation via integral sliding mode control and an application to voice encryption. International Journal of Automation and Control vol. 13 644 (2019) – 10.1504/ijaac.2019.102665
  • Vaidyanathan, A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design. Arch. Control Sci. (2018)
  • Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence (Springer International Publishing, 2017). doi:10.1007/978-3-319-50249-6 – 10.1007/978-3-319-50249-6
  • Wang, Z., Volos, C., Kingni, S. T., Azar, A. T. & Pham, V.-T. Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Optik vol. 131 1071–1078 (2017) – 10.1016/j.ijleo.2016.12.016
  • Bayani, Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. Sect. A Gen. At. Solid State Phys. (2019)
  • Zuo, J. & Li, C.-L. Multiple attractors and dynamic analysis of a no-equilibrium chaotic system. Optik vol. 127 7952–7957 (2016) – 10.1016/j.ijleo.2016.05.069
  • Signing, V. R. F., Kengne, J. & Pone, J. R. M. Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos, Solitons & Fractals vol. 118 187–198 (2019) – 10.1016/j.chaos.2018.10.018
  • Dudkowski, D. et al. Hidden attractors in dynamical systems. Physics Reports vol. 637 1–50 (2016) – 10.1016/j.physrep.2016.05.002
  • Jafari, S. et al. A new hidden chaotic attractor with extreme multi-stability. AEU - International Journal of Electronics and Communications vol. 89 131–135 (2018) – 10.1016/j.aeue.2018.03.037
  • Kuznetsov, N. V. & Leonov, G. A. Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. IFAC Proceedings Volumes vol. 47 5445–5454 (2014) – 10.3182/20140824-6-za-1003.02501
  • Jahanshahi, H. et al. A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Applied Soft Computing vol. 87 105943 (2020) – 10.1016/j.asoc.2019.105943
  • Zhusubaliyev, Z. T., Mosekilde, E., Rubanov, V. G. & Nabokov, R. A. Multistability and hidden attractors in a relay system with hysteresis. Physica D: Nonlinear Phenomena vol. 306 6–15 (2015) – 10.1016/j.physd.2015.05.005
  • Wei, Z., Akgul, A., Kocamaz, U. E., Moroz, I. & Zhang, W. Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo. Chaos, Solitons & Fractals vol. 111 157–168 (2018) – 10.1016/j.chaos.2018.04.020
  • Wang, M. et al. Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors. Chaos, Solitons & Fractals vol. 130 109406 (2020) – 10.1016/j.chaos.2019.109406
  • Dong, E., Yuan, M., Du, S. & Chen, Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Applied Mathematical Modelling vol. 73 40–71 (2019) – 10.1016/j.apm.2019.03.037
  • Qi, G., Hu, J. & Wang, Z. Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Applied Mathematical Modelling vol. 78 350–365 (2020) – 10.1016/j.apm.2019.08.023
  • Cang, S., Wu, A., Wang, Z. & Chen, Z. On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows. Chaos, Solitons & Fractals vol. 99 45–51 (2017) – 10.1016/j.chaos.2017.03.046
  • Miao, Y., Hwang, I., Liu, M. & Wang, F. Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage. Aerospace Science and Technology vol. 93 105312 (2019) – 10.1016/j.ast.2019.105312
  • Labbadi, M. & Cherkaoui, M. Robust Integral Terminal Sliding Mode Control for Quadrotor UAV with External Disturbances. International Journal of Aerospace Engineering vol. 2019 1–10 (2019) – 10.1155/2019/2016416
  • Azar, A. T., Serranot, F. E. & Vaidyanathan, S. Sliding Mode Stabilization and Synchronization of Fractional Order Complex Chaotic and Hyperchaotic Systems. Mathematical Techniques of Fractional Order Systems 283–317 (2018) doi:10.1016/b978-0-12-813592-1.00010-6 – 10.1016/b978-0-12-813592-1.00010-6
  • Azar, A. T. et al. Adaptive Terminal-Integral Sliding Mode Force Control of Elastic Joint Robot Manipulators in the Presence of Hysteresis. Advances in Intelligent Systems and Computing 266–276 (2019) doi:10.1007/978-3-030-31129-2_25 – 10.1007/978-3-030-31129-2_25
  • Yi, S. & Zhai, J. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators. ISA Transactions vol. 90 41–51 (2019) – 10.1016/j.isatra.2018.12.046
  • Labbadi, M. & Cherkaoui, M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerospace Science and Technology vol. 93 105306 (2019) – 10.1016/j.ast.2019.105306
  • Azar, A. T., Serrano, F. E., Flores, M. A., Vaidyanathan, S. & Zhu, Q. Adaptive neural-fuzzy and backstepping controller for port-Hamiltonian systems. International Journal of Computer Applications in Technology vol. 62 1 (2020)10.1504/ijcat.2020.103894
  • Haddad, W. M. & Chellaboina, V. Nonlinear Dynamical Systems and Control. (2008) doi:10.1515/9781400841042 – 10.1515/9781400841042