Stabilization of MT-HVDC grids via passivity-based control and convex optimization
Authors
Oscar Danilo Montoya, Walter Gil-González, Alejandro Garces, Federico Serra, Jesus C. Hernández
Abstract
This paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hierarchical control is developed, which guarantees a stable operation under load variations. This structure includes a port-Hamiltonian formulation representing the network dynamics and a passivity-based control (PBC) for the primary control. This control guarantees stability according to Lyapunov’s theory. Next, a convex optimal power flow formulation based on semidefinite programming (SDP) defines the control’s set point in the secondary/tertiary control. The proposed stabilization scheme is general for both point-to-point HVDC systems and MT-HVDC grids. Simulation results in MATLAB/Simulink demonstrate the stability of the primary control and the optimal performance of the secondary/tertiary control, considering three simulation scenarios on a reduced version of the CIGRE MT-HVDC test system: (i) variation of generation and load, (ii) short-circuit events with different fault resistances and (iii) grid topology variation. These simulations prove the applicability and efficiency of the proposed approach.
Keywords
Convex optimization; Direct-current networks; Passivity-based control; Hierarchical control; Port-Hamiltonian formulation; Stabilization of electrical networks
Citation
- Journal: Electric Power Systems Research
- Year: 2021
- Volume: 196
- Issue:
- Pages: 107273
- Publisher: Elsevier BV
- DOI: 10.1016/j.epsr.2021.107273
BibTeX
@article{Montoya_2021,
title={{Stabilization of MT-HVDC grids via passivity-based control and convex optimization}},
volume={196},
ISSN={0378-7796},
DOI={10.1016/j.epsr.2021.107273},
journal={Electric Power Systems Research},
publisher={Elsevier BV},
author={Montoya, Oscar Danilo and Gil-González, Walter and Garces, Alejandro and Serra, Federico and Hernández, Jesus C.},
year={2021},
pages={107273}
}
References
- Montoya, O. D., Gil-González, W., Grisales-Noreña, L., Orozco-Henao, C. & Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies vol. 12 4494 (2019) – 10.3390/en12234494
- Li, Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. (2018)
- Garces, On convergence of newtons method in power flow study for DC microgrids. IEEE Trans. Power Syst. (2018)
- Magne, P., Nahid-Mobarakeh, B. & Pierfederici, S. General Active Global Stabilization of Multiloads DC-Power Networks. IEEE Transactions on Power Electronics vol. 27 1788–1798 (2012) – 10.1109/tpel.2011.2168426
- Elnady, A. & Adam, A. Decoupled State-Feedback Based Control Scheme for the Distributed Generation System. Electric Power Components and Systems vol. 46 494–510 (2018) – 10.1080/15325008.2018.1453564
- Montoya, Optimal power flow on DC microgrids: A Quadratic convex approximation. IEEE Trans. Circuits Syst. II Exp. Briefs (2018)
- Montoya, Optimal power dispatch of DGs in DC power grids: a hybrid gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem. WSEAS Transactions on Power Systems (2018)
- Benedito, E., del Puerto-Flores, D., Dòria-Cerezo, A. & Scherpen, J. M. A. Port-Hamiltonian based Optimal Power Flow algorithm for multi-terminal DC networks. Control Engineering Practice vol. 83 141–150 (2019) – 10.1016/j.conengprac.2018.10.018
- Murillo-Yarce, Passivity-Based control for DC-Microgrids with constant power terminals in island mode operation. Revista Facultad de Ingeniería (2018)
- Benedito, E., Puerto-Flores, D. del, Dòria-Cerezo, A. & Scherpen, J. M. A. Optimal Power Flow for resistive DC Networks: a Port-Hamiltonian approach. IFAC-PapersOnLine vol. 50 25–30 (2017) – 10.1016/j.ifacol.2017.08.005
- De Persis, C., Weitenberg, E. R. A. & Dörfler, F. A power consensus algorithm for DC microgrids. Automatica vol. 89 364–375 (2018) – 10.1016/j.automatica.2017.12.026
- Tucci, M., Meng, L., Guerrero, J. M. & Ferrari-Trecate, G. Stable current sharing and voltage balancing in DC microgrids: A consensus-based secondary control layer. Automatica vol. 95 1–13 (2018) – 10.1016/j.automatica.2018.04.017
- Tucci, M., Meng, L., Guerrero, J. M. & Ferrari-Trecate, G. Plug-and-play control and consensus algorithms for current sharing in DC microgrids. IFAC-PapersOnLine vol. 50 12440–12445 (2017) – 10.1016/j.ifacol.2017.08.1918
- Shuai, Z., Fang, J., Ning, F. & Shen, Z. J. Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews vol. 82 3670–3682 (2018) – 10.1016/j.rser.2017.10.096
- Lai, J., Lu, X., Yao, W., Wen, J. & Cheng, S. Robust distributed cooperative control for DC mircogrids with time delays, noise disturbances, and switching topologies. Journal of the Franklin Institute vol. 354 8312–8332 (2017) – 10.1016/j.jfranklin.2017.10.025
- Dong, C. et al. DC Microgrid Stability Analysis Considering Time Delay in the Distributed Control. Energy Procedia vol. 142 2126–2131 (2017) – 10.1016/j.egypro.2017.12.616
- Vafamand, N., Khooban, M. H., Dragicevic, T. & Blaabjerg, F. Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Transactions on Industrial Electronics vol. 66 1356–1362 (2019) – 10.1109/tie.2018.2826485
- Kardan, M. A. et al. Improved Stabilization of Nonlinear DC Microgrids: Cubature Kalman Filter Approach. IEEE Transactions on Industry Applications vol. 54 5104–5112 (2018) – 10.1109/tia.2018.2848959
- Grisales Noreña, L. F., Garzón Rivera, O. D., Ocampo Toro, J. A., Ramos Paja, C. A. & Rodriguez Cabal, M. A. Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks. Transactions on Energy Systems and Engineering Applications vol. 1 13–31 (2020) – 10.32397/tesea.vol1.n1.2
- Montoya, Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model. IEEE Trans. Circuits Syst. II Exp. Briefs (2018)
- Gil-González, W., Montoya, O. D., Holguín, E., Garces, A. & Grisales-Noreña, L. F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage vol. 21 1–8 (2019) – 10.1016/j.est.2018.10.025
- Garces, Optimal power flow in multiterminal HVDC systems considering DC/DC converters. (2016)
- Montoya, O. D., Grisales-Noreña, L. F., González-Montoya, D., Ramos-Paja, C. A. & Garces, A. Linear power flow formulation for low-voltage DC power grids. Electric Power Systems Research vol. 163 375–381 (2018) – 10.1016/j.epsr.2018.07.003
- Simpson-Porco, On resistive networks of constant-Power devices. IEEE Trans. Circuits Syst. II Exp. Briefs (2015)
- Gavriluta, C., Candela, I., Citro, C., Luna, A. & Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electric Power Systems Research vol. 122 33–41 (2015) – 10.1016/j.epsr.2014.12.020
- Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electric Power Systems Research vol. 151 149–153 (2017) – 10.1016/j.epsr.2017.05.031
- Cisneros, R., Mancilla-David, F. & Ortega, R. Passivity-Based Control of a Grid-Connected Small-Scale Windmill With Limited Control Authority. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 1 247–259 (2013) – 10.1109/jestpe.2013.2285376
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions on Automatic Control vol. 61 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Gil-González, W., Garces, A. & Escobar, A. Passivity-based control and stability analysis for hydro-turbine governing systems. Applied Mathematical Modelling vol. 68 471–486 (2019) – 10.1016/j.apm.2018.11.045
- Montoya, PBC Approach for SMES devices in electric distribution networks. IEEE Trans. Circuits Syst. II Exp. Briefs (2018)
- Serra, F. M. & De Angelo, C. H. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research vol. 142 12–19 (2017) – 10.1016/j.epsr.2016.08.041
- Jubril, A. M., Adediji, A. O. & Olaniyan, O. A. Solving the Combined Heat and Power Dispatch Problem: A Semi-definite Programming Approach. Electric Power Components and Systems vol. 40 1362–1376 (2012) – 10.1080/15325008.2012.694972
- Jubril, A. M. & Adediji, A. O. Semi-definite Programming Approach to Stochastic Combined Heat and Power Environmental/Economic Dispatch Problem. Electric Power Components and Systems vol. 43 2039–2049 (2015) – 10.1080/15325008.2015.1075082
- Gil-González, W., Montoya, O. D., Holguín, E., Garces, A. & Grisales-Noreña, L. F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. Journal of Energy Storage vol. 21 1–8 (2019) – 10.1016/j.est.2018.10.025