Stability analysis of interconnected Hamiltonian systems under time delays
Authors
Abstract
Sufficient conditions are derived for checking whether interconnected port-Hamiltonian systems are stable in the presence of time delays. It is assumed that the time delay parameters are unknown time-varying functions for which the only available information is about the upper bounds on their magnitude and/or variation. The stability conditions proposed here are established by constructing Lyapunov–Krasovskii stability certificates, based on the Hamiltonians of the individual port-Hamiltonian systems. The forms of the Lyapunov–Krasovskii functionals vary according to the information available on the delay parameter. It is shown how different informations on the delay are utilised to construct stability certificates.
Citation
- Journal: IET Control Theory & Applications
- Year: 2012
- Volume: 6
- Issue: 4
- Pages: 570–577
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-cta.2011.0076
BibTeX
@article{Kao_2012,
title={{Stability analysis of interconnected Hamiltonian systems under time delays}},
volume={6},
ISSN={1751-8652},
DOI={10.1049/iet-cta.2011.0076},
number={4},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Kao, C.-Y. and Pasumarthy, R.},
year={2012},
pages={570--577}
}
References
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Garcia–Canseco, E., Pasumarthy, R., van der Schaft, A. & Ortega, R. ON CONTROL BY INTERCONNECTION OF PORT HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes vol. 38 330–335 (2005) – 10.3182/20050703-6-cz-1902.00709
- Fridman, E. & Shaked, U. Delay-dependent stability and H ∞ control: Constant and time-varying delays. International Journal of Control vol. 76 48–60 (2003) – 10.1080/0020717021000049151
- Fridman, E. & Shaked, U. On delay-dependent passivity. IEEE Transactions on Automatic Control vol. 47 664–669 (2002) – 10.1109/9.995046
- Gu, K., Kharitonov, V. L. & Chen, J. Stability of Time-Delay Systems. (Birkhäuser Boston, 2003). doi:10.1007/978-1-4612-0039-0 – 10.1007/978-1-4612-0039-0
- Kharitonov, V. L. & Niculescu, S.-I. On the stability of linear systems with uncertain delay. IEEE Transactions on Automatic Control vol. 48 127–132 (2003) – 10.1109/tac.2002.806665
- Jin-Hoon Kim. Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty. IEEE Transactions on Automatic Control vol. 46 789–792 (2001) – 10.1109/9.920802
- Kolmanovskii, V. B. On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems. International Journal of Control vol. 72 374–384 (1999) – 10.1080/002071799221172
- Niculescu, S.-I. & Lozano, R. On the passivity of linear delay systems. IEEE Transactions on Automatic Control vol. 46 460–464 (2001) – 10.1109/9.911424
- Suplin, V., Fridman, E. & Shaked, U. <tex>$H_infty$</tex>Control of Linear Uncertain Time-Delay Systems—A Projection Approach. IEEE Transactions on Automatic Control vol. 51 680–685 (2006) – 10.1109/tac.2006.872767
- Wu, M., He, Y., She, J.-H. & Liu, G.-P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica vol. 40 1435–1439 (2004) – 10.1016/j.automatica.2004.03.004
- Fridman, E. & Shaked, U. Input–output approach to stability and -gain analysis of systems with time-varying delays. Systems & Control Letters vol. 55 1041–1053 (2006) – 10.1016/j.sysconle.2006.07.002
- Kao, C.-Y. & Lincoln, B. Simple stability criteria for systems with time-varying delays. Automatica vol. 40 1429–1434 (2004) – 10.1016/j.automatica.2004.03.011
- Kao, C.-Y. & Rantzer, A. Stability analysis of systems with uncertain time-varying delays. Automatica vol. 43 959–970 (2007) – 10.1016/j.automatica.2006.12.006
- Richard, J.-P. Time-delay systems: an overview of some recent advances and open problems. Automatica vol. 39 1667–1694 (2003) – 10.1016/s0005-1098(03)00167-5
- Fridman, E., Dambrine, M. & Yeganefar, N. On input-to-state stability of systems with time-delay: A matrix inequalities approach. Automatica vol. 44 2364–2369 (2008) – 10.1016/j.automatica.2008.01.012
- Mazenc, F. & Niculescu, S.-I. Lyapunov stability analysis for nonlinear delay systems. Systems & Control Letters vol. 42 245–251 (2001) – 10.1016/s0167-6911(00)00093-1
- Papachristodoulou, A. Analysis of nonlinear time-delay systems using the sum of squares decomposition. Proceedings of the 2004 American Control Conference 4153–4158 vol.5 (2004) doi:10.23919/acc.2004.1383959 – 10.23919/acc.2004.1383959
- Pasumarthy, R. & Kao, C.-Y. On stability of time delay Hamiltonian systems. 2009 American Control Conference 4909–4914 (2009) doi:10.1109/acc.2009.5160619 – 10.1109/acc.2009.5160619
- Kolmanovskii, V. & Myshkis, A. Applied Theory of Functional Differential Equations. (Springer Netherlands, 1992). doi:10.1007/978-94-015-8084-7 – 10.1007/978-94-015-8084-7
- Keqin Gu & Niculescu, S.-I. Additional dynamics in transformed time-delay systems. IEEE Transactions on Automatic Control vol. 45 572–575 (2000) – 10.1109/9.847747
- Prajna, S., Papachristodoulou, A., and Parillo, P.: ‘Introducing SOSTOOLS: a general purpose sum of squares programming solver’, 2004),Proc. 41st IEEE Conf. on Decision and Control, December