Authors

Jianghao Chen, Suxia Xie, Miaowenhao Sun, Zhaoyou Zeng, Siyi Sun, Xin Guan

Abstract

Bulk transition metal dichalcogenides have become staples in nanophotonics, condensed matter physics, and quantum optics due to their elevated refractive index and the reliable exciton response they maintain at room temperature. In our research, we harness block WS2 to engineer an ultra-thin nanodisk metasurface capable of supporting both magnetic dipole Q-BIC (quasi-bound in the continuum) resonance and magnetic ring dipole Q-BIC resonance. Remarkably, these Q-BIC resonances are capable of self-hybridizing with excitons, facilitating intense light-matter interactions within the structure, independent of an external cavity. The self-hybridized exciton polaritons, a result of the strong coupling between Q-BIC and excitons, display characteristic anti-crossing behavior, with Rabi splittings reaching up to 161 meV and 165 meV, respectively. Building upon these findings, we utilize a Hamiltonian model that accounts for residual excitons, thereby substantiating the strong coupling phenomenon. Our discoveries hold significant promise for the manipulation of excitonic polaritons at room temperature, potentially leading to the development of large-scale, cost-effective integrated polaron devices that operate under room temperature.

Citation

  • Journal: Physica B: Condensed Matter
  • Year: 2025
  • Volume: 706
  • Issue:
  • Pages: 417141
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.physb.2025.417141

BibTeX

@article{Chen_2025,
  title={{Regulation of strong coupling between multiple BICs and excitons in bulk WS2 metasurfaces}},
  volume={706},
  ISSN={0921-4526},
  DOI={10.1016/j.physb.2025.417141},
  journal={Physica B: Condensed Matter},
  publisher={Elsevier BV},
  author={Chen, Jianghao and Xie, Suxia and Sun, Miaowenhao and Zeng, Zhaoyou and Sun, Siyi and Guan, Xin},
  year={2025},
  pages={417141}
}

Download the bib file

References

  • Chen, Y. et al. Unraveling the Ultrafast Coherent Dynamics of Exciton Polariton Propagation at Room Temperature. Nano Letters vol. 23 8704–8711 (2023) – 10.1021/acs.nanolett.3c02547
  • Berghuis, A. M. et al. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics vol. 9 2263–2272 (2022) – 10.1021/acsphotonics.2c00007
  • Huang, L., Xu, L., Powell, D. A., Padilla, W. J. & Miroshnichenko, A. E. Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Physics Reports vol. 1008 1–66 (2023) – 10.1016/j.physrep.2023.01.001
  • Anantharaman, S. B., Jo, K. & Jariwala, D. Exciton–Photonics: From Fundamental Science to Applications. ACS Nano vol. 15 12628–12654 (2021) – 10.1021/acsnano.1c02204
  • Hertzog, M., Wang, M., Mony, J. & Börjesson, K. Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews vol. 48 937–961 (2019) – 10.1039/c8cs00193f
  • Li, Advanced optical reinforcement materials based on three-dimensional four-way weaving structure and metasurface technology. Appl. Phys. Lett. (2025)
  • Moxley, F. I., III, Ilo-Okeke, E. O., Mudaliar, S. & Byrnes, T. Quantum technology applications of exciton-polariton condensates. Emergent Materials vol. 4 971–988 (2021) – 10.1007/s42247-021-00200-x
  • Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics vol. 82 1489–1537 (2010) – 10.1103/revmodphys.82.1489
  • Liew, T. C. H., Kavokin, A. V. & Shelykh, I. A. Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities. Physical Review Letters vol. 101 (2008) – 10.1103/physrevlett.101.016402
  • Ghosh, Microcavity exciton polaritons at room temperature (2022)
  • Xiao, S., Qin, M., Duan, J., Wu, F. & Liu, T. Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum. Physical Review B vol. 105 (2022) – 10.1103/physrevb.105.195440
  • Li, Z. et al. Ultrathin broadband terahertz metamaterial based on single-layer nested patterned graphene. Physics Letters A vol. 534 130262 (2025) – 10.1016/j.physleta.2025.130262
  • Chen, Z. et al. Ultra wideband absorption absorber based on Dirac semimetallic and graphene metamaterials. Physics Letters A vol. 517 129675 (2024) – 10.1016/j.physleta.2024.129675
  • LaMountain, T. et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nature Communications vol. 12 (2021) – 10.1038/s41467-021-24764-8
  • Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics vol. 9 30–34 (2014) – 10.1038/nphoton.2014.304
  • Yang, L. et al. Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excitons under Ambient Conditions in a Deterministic Way. Nano Letters vol. 22 2177–2186 (2022) – 10.1021/acs.nanolett.1c03282
  • Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nature Nanotechnology vol. 14 679–683 (2019) – 10.1038/s41565-019-0442-x
  • Shen, F. et al. Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition. Nature Communications vol. 13 (2022) – 10.1038/s41467-022-33088-0
  • Zhang, H. et al. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nature Communications vol. 11 (2020) – 10.1038/s41467-020-17313-2
  • Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric Metasurfaces with HighQ</mml:math Resonances Governed by Bound States in the Continuum. Physical Review Letters vol. 121 (2018) -- [10.1103/physrevlett.121.193903](https://doi.org/10.1103/physrevlett.121.193903)
  • Jin, J. et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature vol. 574 501–504 (2019) – 10.1038/s41586-019-1664-7
  • Kang, M., Zhang, S., Xiao, M. & Xu, H. Merging Bound States in the Continuum at Off-High Symmetry Points. Physical Review Letters vol. 126 (2021) – 10.1103/physrevlett.126.117402
  • Cheng, S. et al. High sensitivity five band tunable metamaterial absorption device based on block like Dirac semimetals. Optics Communications vol. 569 130816 (2024) – 10.1016/j.optcom.2024.130816
  • Qin, M. et al. Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Optics Express vol. 29 18026 (2021) – 10.1364/oe.427141
  • Qin, M. et al. Manipulating strong coupling between exciton and quasibound states in the continuum resonance. Physical Review B vol. 105 (2022) – 10.1103/physrevb.105.195425
  • Xie, S. et al. Manipulation of the multiple bound states in the continuum and slow light effect in the all-dielectric metasurface. Journal of Physics D: Applied Physics vol. 56 405109 (2023) – 10.1088/1361-6463/acdf6a
  • Xie, S., Shen, W., Yang, J. & Bai, C. Multi-Bound States in the Continuum and Lineshape Tailoring of the Multi-Layers Dielectric Metasurface. Journal of Lightwave Technology vol. 41 6549–6557 (2023) – 10.1109/jlt.2023.3288412
  • Xie, S. et al. Photonic manipulation of the all-dielectric terahertz metasurface based on bound states in the continuum. Chinese Journal of Physics vol. 88 339–348 (2024) – 10.1016/j.cjph.2023.08.011
  • Liu, T. et al. Edge Detection Imaging by Quasi-Bound States in the Continuum. Nano Letters vol. 24 14466–14474 (2024) – 10.1021/acs.nanolett.4c04543
  • Zeng, Z. et al. Tunable ultra-sensitive four-band terahertz sensors based on Dirac semimetals. Photonics and Nanostructures - Fundamentals and Applications vol. 63 101347 (2025) – 10.1016/j.photonics.2024.101347
  • Qin, M. et al. Strong coupling between excitons and quasibound states in the continuum in bulk transition metal dichalcogenides. Physical Review B vol. 107 (2023) – 10.1103/physrevb.107.045417
  • Li, Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures. Appl. Phys. Lett. (2022)
  • Munkhbat, B. et al. Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption. ACS Photonics vol. 6 139–147 (2018) – 10.1021/acsphotonics.8b01194
  • Wang, S. et al. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics vol. 6 286–293 (2019) – 10.1021/acsphotonics.8b01459
  • Cai, H., Li, J. & Mao, L. Perfect linear polarization wave generator based on quasi-bound states in the continuum. Optics Letters vol. 48 2559 (2023) – 10.1364/ol.487655
  • Zhou, H. et al. Photonic spin-controlled self-hybridized exciton-polaritons inWS2</mml:math metasurfaces driven by chiral quasibound states in the continuum. Physical Review B vol. 109 (2024) -- [10.1103/physrevb.109.125201](https://doi.org/10.1103/physrevb.109.125201)
  • Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. Journal of the Optical Society of America A vol. 20 569 (2003) – 10.1364/josaa.20.000569
  • Valagiannopoulos, C. A. & Alitalo, P. Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings. Physical Review B vol. 85 (2012) – 10.1103/physrevb.85.115402
  • Tsilipakos, O., Christopoulos, T. & Kriezis, E. E. Long-Range Hybrid Plasmonic Disk Resonators for mW Bistability and Self-Pulsation. Journal of Lightwave Technology vol. 34 1333–1343 (2016) – 10.1109/jlt.2015.2511447
  • Tsitsas, N. L. & Valagiannopoulos, C. A. Anomalous reflection of visible light by all-dielectric gradient metasurfaces. Journal of the Optical Society of America B vol. 34 D1 (2017) – 10.1364/josab.34.0000d1
  • Hesari-Shermeh, M., Abbasi-Arand, B. & Yazdi, M. Analysis of substrated periodic metasurfaces under normal incidence. Optics Express vol. 29 1694 (2021) – 10.1364/oe.413103
  • Liu, N. & Liedl, T. DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews vol. 118 3032–3053 (2018) – 10.1021/acs.chemrev.7b00225