Authors

David S. Simon, Casey A. Fitzpatrick, Shuto Osawa, Alexander V. Sergienko

Abstract

Quantum computers have been shown to be capable of performing certain kinds of tasks exponentially faster than classical computers. As a result, an enormous amount of effort has gone into their development. Although advances have been made, the ultimate goal of a large-scale programmable, general-purpose quantum computer still seems to be a relatively long way off. Therefore it is useful to consider returning to Feynman’s original motivation for discussing quantum computers: using simple quantum systems to simulate the behavior of more complicated physical systems.

Citation

  • Journal: Physical Review A
  • Year: 2017
  • Volume: 95
  • Issue: 4
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/physreva.95.042109

BibTeX

@article{Simon_2017,
  title={{Quantum simulation of discrete-time Hamiltonians using directionally unbiased linear optical multiports}},
  volume={95},
  ISSN={2469-9934},
  DOI={10.1103/physreva.95.042109},
  number={4},
  journal={Physical Review A},
  publisher={American Physical Society (APS)},
  author={Simon, David S. and Fitzpatrick, Casey A. and Osawa, Shuto and Sergienko, Alexander V.},
  year={2017}
}

Download the bib file

References

  • Feynman, R. P. Simulating physics with computers. Int J Theor Phys 21, 467–488 (1982) – 10.1007/bf02650179
  • Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys 8, 285–291 (2012) – 10.1038/nphys2253
  • Johnson, T. H., Clark, S. R. & Jaksch, D. What is a quantum simulator? EPJ Quantum Technol. 1, (2014) – 10.1140/epjqt10
  • Simon, D. S., Fitzpatrick, C. A. & Sergienko, A. V. Group transformations and entangled-state quantum gates with directionally unbiased linear-optical multiports. Phys. Rev. A 93, (2016) – 10.1103/physreva.93.043845
  • Hillery, M., Bergou, J. & Feldman, E. Quantum walks based on an interferometric analogy. Phys. Rev. A 68, (2003) – 10.1103/physreva.68.032314
  • Feldman, E. & Hillery, M. Scattering theory and discrete-time quantum walks. Physics Letters A 324, 277–281 (2004) – 10.1016/j.physleta.2004.03.005
  • Feldman, E. & Hillery, M. Quantum walks on graphs and quantum scattering theory. Contemporary Mathematics 71–95 (2005) doi:10.1090/conm/381/07092 – 10.1090/conm/381/07092
  • Feldman, E. & Hillery, M. Modifying quantum walks: a scattering theory approach. J. Phys. A: Math. Theor. 40, 11343–11359 (2007) – 10.1088/1751-8113/40/37/011
  • Tarasinski, B., Asbóth, J. K. & Dahlhaus, J. P. Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.042327
  • Carneiro, I. et al. Entanglement in coined quantum walks on regular graphs. New J. Phys. 7, 156–156 (2005) – 10.1088/1367-2630/7/1/156
  • Kitagawa, T. Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf Process 11, 1107–1148 (2012) – 10.1007/s11128-012-0425-4
  • Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators. Lecture Notes in Physics (Springer International Publishing, 2016). doi:10.1007/978-3-319-25607-8 – 10.1007/978-3-319-25607-8
  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010) – 10.1103/revmodphys.82.3045
  • G. B. Arfken, Mathematical Methods for Physicists (2012)