Authors

Jin-Song Huang, Jia-Hao Zhang, Lian-Fu Wei

Abstract

The quantum routing of single surface plasmons in a system with two metal nanowires coupled to a pair of quantum dots is investigated theoretically. Real-space Hamiltonians are utilized to obtain the surface-plasmon routing probabilities scattered by two quantum dots in four ports of two nanowire waveguides. Numerical results show that the routing capability of the surface plasmons transmitted from the input channel into another channel can be significantly enhanced, by properly adjusting the interdot distance and the dot-plasmon couplings. Moreover, multi-peak Fano-like resonances are exhibited in the scattering spectra due to the quadratic dispersion relations of the nanowire waveguides. Therefore, the proposed double-dot configuration may provide potential applications in controlling the surface-plasmon routing and Fano-like resonance.

Citation

  • Journal: Journal of Modern Optics
  • Year: 2019
  • Volume: 66
  • Issue: 9
  • Pages: 958–964
  • Publisher: Informa UK Limited
  • DOI: 10.1080/09500340.2019.1595199

BibTeX

@article{Huang_2019,
  title={{Quantum routing of surface plasmons by two quantum dots}},
  volume={66},
  ISSN={1362-3044},
  DOI={10.1080/09500340.2019.1595199},
  number={9},
  journal={Journal of Modern Optics},
  publisher={Informa UK Limited},
  author={Huang, Jin-Song and Zhang, Jia-Hao and Wei, Lian-Fu},
  year={2019},
  pages={958--964}
}

Download the bib file

References

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008) – 10.1038/nature07127
  • Aoki, T. et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.083601
  • Xia K., Phys. Rev. X (2013)
  • Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014) – 10.1126/science.1254699
  • Zhou, L., Yang, L.-P., Li, Y. & Sun, C. P. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.103604
  • Lu, J., Zhou, L., Kuang, L.-M. & Nori, F. Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.013805
  • Yan, W.-B., Liu, B., Zhou, L. & Fan, H. All-optical router at single-photon level by interference. EPL 111, 64005 (2015) – 10.1209/0295-5075/111/64005
  • Hoi, I.-C. et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.073601
  • Agarwal, G. S. & Huang, S. Optomechanical systems as single-photon routers. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.021801
  • Li, X., Zhang, W.-Z., Xiong, B. & Zhou, L. Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci Rep 6, (2016) – 10.1038/srep39343
  • Lemr, K. & Černoch, A. Linear-optical programmable quantum router. Optics Communications 300, 282–285 (2013) – 10.1016/j.optcom.2013.02.052
  • Li, X. & Wei, L. F. Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.063836
  • Huang, J.-S., Wang, J.-W., Wang, Y. & Zhong, Y.-W. Control of single-photon routing by another atom. J. Phys. B: At. Mol. Opt. Phys. 51, 025502 (2017) – 10.1088/1361-6455/aa9a99
  • Chen, X.-Y., Zhang, F.-Y. & Li, C. Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016) – 10.1364/josab.33.000583
  • Zia, R. & Brongersma, M. L. Surface plasmon polariton analogue to Young’s double-slit experiment. Nature Nanotech 2, 426–429 (2007) – 10.1038/nnano.2007.185
  • Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S. & Nori, F. Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Rev. Mod. Phys. 80, 1201–1213 (2008) – 10.1103/revmodphys.80.1201
  • Savel’ev, S., Yampol’skii, V. A., Rakhmanov, A. L. & Nori, F. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys. 73, 026501 (2010) – 10.1088/0034-4885/73/2/026501
  • Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007) – 10.1038/nature06230
  • Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures. Phys. Rev. Lett. 99, (2007) – 10.1103/physrevlett.99.136802
  • Li, Q., Wei, H. & Xu, H. Resolving Single Plasmons Generated by Multiquantum-Emitters on a Silver Nanowire. Nano Lett. 14, 3358–3363 (2014) – 10.1021/nl500838q
  • Chen, W., Chen, G.-Y. & Chen, Y.-N. Controlling Fano resonance of nanowire surface plasmons. Opt. Lett. 36, 3602 (2011) – 10.1364/ol.36.003602
  • Chen, G.-Y. & Chen, Y.-N. Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023 (2012) – 10.1364/ol.37.004023
  • Cheng, M.-T. & Song, Y.-Y. Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978 (2012) – 10.1364/ol.37.000978
  • Chen, W., Chen, G.-Y. & Chen, Y.-N. Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18, 10360 (2010) – 10.1364/oe.18.010360
  • Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N. & Nori, F. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, (2011) – 10.1103/physrevb.84.045310
  • Chen, G.-Y., Li, C.-M. & Chen, Y.-N. Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337 (2012) – 10.1364/ol.37.001337
  • Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys 3, 807–812 (2007) – 10.1038/nphys708
  • Hong, F.-Y. & Xiong, S.-J. Single-photon Transistors Based on the Interaction of an Emitter and Surface Plasmons. Nanoscale Res Lett 3, (2008) – 10.1007/s11671-008-9166-9
  • Kim, N.-C., Li, J.-B., Yang, Z.-J., Hao, Z.-H. & Wang, Q.-Q. Switching of a single propagating plasmon by two quantum dots system. Applied Physics Letters 97, (2010) – 10.1063/1.3475769
  • Yan, C.-H. & Wei, L.-F. Quantum optical switches and beam splitters with surface plasmons. Journal of Applied Physics 112, (2012) – 10.1063/1.4748303
  • Li, J. & Yu, R. Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center. Opt. Express 19, 20991 (2011) – 10.1364/oe.19.020991
  • Chen, G.-Y., Chen, Y.-N. & Chuu, D.-S. Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire. Opt. Lett. 33, 2212 (2008) – 10.1364/ol.33.002212
  • Chen, Y. N., Chen, G. Y., Chuu, D. S. & Brandes, T. Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics. Phys. Rev. A 79, (2009) – 10.1103/physreva.79.033815
  • Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum Optics with Surface Plasmons. Phys. Rev. Lett. 97, (2006) – 10.1103/physrevlett.97.053002
  • Shen, J.-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, (2009) – 10.1103/physreva.79.023837
  • Roy, D. Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures. Phys. Rev. A 87, (2013) – 10.1103/physreva.87.063819
  • Zhou, L., Dong, H., Liu, Y., Sun, C. P. & Nori, F. Quantum supercavity with atomic mirrors. Phys. Rev. A 78, (2008) – 10.1103/physreva.78.063827
  • Chen, G.-Y. & Chen, Y.-N. Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023 (2012) – 10.1364/ol.37.004023
  • Chen, G.-Y., Liu, M.-H. & Chen, Y.-N. Scattering of microwave photons in superconducting transmission-line resonators coupled to charge qubits. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.053802
  • Shegai, T., Huang, Y., Xu, H. & Käll, M. Coloring fluorescence emission with silver nanowires. Applied Physics Letters 96, (2010) – 10.1063/1.3355545