Proposal of Deterministic Policy Gradient Method for Port-Hamiltonian Systems Using Eligibility Trace and Verification by Numerical Experiment
Authors
Shuichi FUKUNAGA, Ryota KOKUBO
Abstract
No available
Citation
- Journal: Transactions of the Society of Instrument and Control Engineers
- Year: 2023
- Volume: 59
- Issue: 4
- Pages: 232–234
- Publisher: The Society of Instrument and Control Engineers
- DOI: 10.9746/sicetr.59.232
BibTeX
@article{FUKUNAGA_2023,
title={{Proposal of Deterministic Policy Gradient Method for Port-Hamiltonian Systems Using Eligibility Trace and Verification by Numerical Experiment}},
volume={59},
ISSN={1883-8189},
DOI={10.9746/sicetr.59.232},
number={4},
journal={Transactions of the Society of Instrument and Control Engineers},
publisher={The Society of Instrument and Control Engineers},
author={FUKUNAGA, Shuichi and KOKUBO, Ryota},
year={2023},
pages={232--234}
}
References
- Nian, R., Liu, J. & Huang, B. A review On reinforcement learning: Introduction and applications in industrial process control. Computers & Chemical Engineering 139, 106886 (2020) – 10.1016/j.compchemeng.2020.106886
- Sprangers, O., Babuska, R., Nageshrao, S. P. & Lopes, G. A. D. Reinforcement Learning for Port-Hamiltonian Systems. IEEE Trans. Cybern. 45, 1017–1027 (2015) – 10.1109/tcyb.2014.2343194