Authors

Xingze Qiu, Peter Zoller, Xiaopeng Li

Abstract

Quantum annealing aims at solving optimization problems efficiently by preparing the ground state of an Ising spin-Hamiltonian quantum mechanically. A prerequisite of building a quantum annealer is the implementation of programmable long-range two-, three- or multi-spin Ising interactions. We discuss an architecture, where the required spin interactions are implemented via two-port, or in general multi-port quantum Ising wires connecting the spins of interest. This quantum annealing architecture of spins connected by Ising quantum wires can be realized by exploiting the three dimensional character of atomic platforms, including atoms in optical lattices and Rydberg tweezer arrays. The realization only requires engineering on-site terms and two-body interactions between nearest neighboring qubits. We illustrate the approach for few spin devices solving Max-Cut and prime factorization problems, and discuss the potential scaling to large atom based systems.

Citation

  • Journal: PRX Quantum
  • Year: 2020
  • Volume: 1
  • Issue: 2
  • Pages:
  • Publisher: American Physical Society (APS)
  • DOI: 10.1103/prxquantum.1.020311

BibTeX

@article{Qiu_2020,
  title={{Programmable Quantum Annealing Architectures with Ising Quantum Wires}},
  volume={1},
  ISSN={2691-3399},
  DOI={10.1103/prxquantum.1.020311},
  number={2},
  journal={PRX Quantum},
  publisher={American Physical Society (APS)},
  author={Qiu, Xingze and Zoller, Peter and Li, Xiaopeng},
  year={2020}
}

Download the bib file

References

  • Farhi, E. et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292, 472–475 (2001) – 10.1126/science.1057726
  • Das, A. & Chakrabarti, B. K. Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008) – 10.1103/revmodphys.80.1061
  • Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, (2018) – 10.1103/revmodphys.90.015002
  • Lucas, A. Ising formulations of many NP problems. Front. Physics 2, (2014) – 10.3389/fphy.2014.00005
  • Jörg, T., Krzakala, F., Kurchan, J. & Maggs, A. C. Simple Glass Models and Their Quantum Annealing. Phys. Rev. Lett. 101, (2008) – 10.1103/physrevlett.101.147204
  • Dickson, N. G. & Amin, M. H. S. Does Adiabatic Quantum Optimization Fail for NP-Complete Problems? Phys. Rev. Lett. 106, (2011) – 10.1103/physrevlett.106.050502
  • Altshuler, B., Krovi, H. & Roland, J. Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. U.S.A. 107, 12446–12450 (2010) – 10.1073/pnas.1002116107
  • Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy Chimeras Could Be Blind to Quantum Speedup: Designing Better Benchmarks for Quantum Annealing Machines. Phys. Rev. X 4, (2014) – 10.1103/physrevx.4.021008
  • Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014) – 10.1126/science.1252319
  • Peng, X. et al. Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation. Phys. Rev. Lett. 101, (2008) – 10.1103/physrevlett.101.220405
  • Jiang, S., Britt, K. A., McCaskey, A. J., Humble, T. S. & Kais, S. Quantum Annealing for Prime Factorization. Sci Rep 8, (2018) – 10.1038/s41598-018-36058-z
  • Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. Phys. Rev. X 10, (2020) – 10.1103/physrevx.10.021067
  • Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nature Phys 10, 218–224 (2014) – 10.1038/nphys2900
  • Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with all-to-all connectivity from local interactions. Sci. Adv. 1, (2015) – 10.1126/sciadv.1500838
  • Rocchetto, A., Benjamin, S. C. & Li, Y. Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer. Sci. Adv. 2, (2016) – 10.1126/sciadv.1601246
  • Glaetzle, A. W., van Bijnen, R. M. W., Zoller, P. & Lechner, W. A coherent quantum annealer with Rydberg atoms. Nat Commun 8, (2017) – 10.1038/ncomms15813
  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017) – 10.1126/science.aal3837
  • Yi, W., Daley, A. J., Pupillo, G. & Zoller, P. State-dependent, addressable subwavelength lattices with cold atoms. New J. Phys. 10, 073015 (2008) – 10.1088/1367-2630/10/7/073015
  • Gauthier, G. et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials. Optica 3, 1136 (2016) – 10.1364/optica.3.001136
  • Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017) – 10.1038/nature22362
  • McDonald, M., Trisnadi, J., Yao, K.-X. & Chin, C. Superresolution Microscopy of Cold Atoms in an Optical Lattice. Phys. Rev. X 9, (2019) – 10.1103/physrevx.9.021001
  • Subhankar, S., Wang, Y., Tsui, T.-C., Rolston, S. L. & Porto, J. V. Nanoscale Atomic Density Microscopy. Phys. Rev. X 9, (2019) – 10.1103/physrevx.9.021002
  • Qiu, X., Zou, J., Qi, X. & Li, X. Precise programmable quantum simulations with optical lattices. npj Quantum Inf 6, (2020) – 10.1038/s41534-020-00315-9
  • Honer, J., Weimer, H., Pfau, T. & Büchler, H. P. Collective Many-Body Interaction in Rydberg Dressed Atoms. Phys. Rev. Lett. 105, (2010) – 10.1103/physrevlett.105.160404
  • Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I. & Zoller, P. Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics. Phys. Rev. Lett. 104, (2010) – 10.1103/physrevlett.104.223002
  • Viteau, M. et al. Rydberg Excitations in Bose-Einstein Condensates in Quasi-One-Dimensional Potentials and Optical Lattices. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.060402
  • Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016) – 10.1126/science.aaf2581
  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020) – 10.1038/s41567-019-0733-z
  • Duan, L.-M. & Monroe, C. Colloquium: Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010) – 10.1103/revmodphys.82.1209
  • Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010) – 10.1103/revmodphys.82.2313
  • Weinberg, S. The Quantum Theory of Fields. (1995) doi:10.1017/cbo9781139644167 – 10.1017/cbo9781139644167
  • Clark, B. N., Colbourn, C. J. & Johnson, D. S. Unit disk graphs. Discrete Mathematics 86, 165–177 (1990) – 10.1016/0012-365x(90)90358-o
  • Barabási, A.-L. & Albert, R. Emergence of Scaling in Random Networks. Science 286, 509–512 (1999) – 10.1126/science.286.5439.509
  • Kjaergaard, M. et al. Superconducting Qubits: Current State of Play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020) – 10.1146/annurev-conmatphys-031119-050605
  • Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013) – 10.1103/revmodphys.85.961
  • Lin, J., Lai, Z. Y. & Li, X. Quantum adiabatic algorithm design using reinforcement learning. Phys. Rev. A 101, (2020) – 10.1103/physreva.101.052327
  • Boros, E. & Hammer, P. L. Pseudo-Boolean optimization. Discrete Applied Mathematics 123, 155–225 (2002) – 10.1016/s0166-218x(01)00341-9
  • Altland, A. & Simons, B. D. Condensed Matter Field Theory. (2010) doi:10.1017/cbo9780511789984 – 10.1017/cbo9780511789984
  • Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387–1398 (1976) – 10.1088/0305-4470/9/8/029
  • Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985) – 10.1038/317505a0
  • Demirplak, M. & Rice, S. A. Adiabatic Population Transfer with Control Fields. J. Phys. Chem. A 107, 9937–9945 (2003) – 10.1021/jp030708a
  • Berry, M. V. Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009) – 10.1088/1751-8113/42/36/365303
  • Kolodrubetz, M., Sels, D., Mehta, P. & Polkovnikov, A. Geometry and non-adiabatic response in quantum and classical systems. Physics Reports 697, 1–87 (2017) – 10.1016/j.physrep.2017.07.001
  • Duan, L.-M., Demler, E. & Lukin, M. D. Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 91, (2003) – 10.1103/physrevlett.91.090402
  • Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of Atoms via Cold Controlled Collisions. Phys. Rev. Lett. 82, 1975–1978 (1999) – 10.1103/physrevlett.82.1975
  • Liu, W. V., Wilczek, F. & Zoller, P. Spin-dependent Hubbard model and a quantum phase transition in cold atoms. Phys. Rev. A 70, (2004) – 10.1103/physreva.70.033603
  • Lee, P. et al. Sublattice Addressing and Spin-Dependent Motion of Atoms in a Double-Well Lattice. Phys. Rev. Lett. 99, (2007) – 10.1103/physrevlett.99.020402
  • Daley, A. J., Boyd, M. M., Ye, J. & Zoller, P. Quantum Computing with Alkaline-Earth-Metal Atoms. Phys. Rev. Lett. 101, (2008) – 10.1103/physrevlett.101.170504
  • Dai, H.-N. et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nature Phys 13, 1195–1200 (2017) – 10.1038/nphys4243
  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010) – 10.1103/revmodphys.82.1225
  • Mamaev, M., Blatt, R., Ye, J. & Rey, A. M. Cluster State Generation with Spin-Orbit Coupled Fermionic Atoms in Optical Lattices. Phys. Rev. Lett. 122, (2019) – 10.1103/physrevlett.122.160402
  • Zhang, R., Cheng, Y., Zhai, H. & Zhang, P. Orbital Feshbach Resonance in Alkali-Earth Atoms. Phys. Rev. Lett. 115, (2015) – 10.1103/physrevlett.115.135301
  • Höfer, M. et al. Observation of an Orbital Interaction-Induced Feshbach Resonance inYb173. Phys. Rev. Lett. 115, (2015) – 10.1103/physrevlett.115.265302
  • Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature 542, 66–70 (2016) – 10.1038/nature20811
  • Goban, A. et al. Emergence of multi-body interactions in a fermionic lattice clock. Nature 563, 369–373 (2018) – 10.1038/s41586-018-0661-6
  • Graß, T. Quantum Annealing with Longitudinal Bias Fields. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.120501
  • Glaetzle, A. W. et al. Quantum Spin-Ice and Dimer Models with Rydberg Atoms. Phys. Rev. X 4, (2014) – 10.1103/physrevx.4.041037
  • Weber, S. et al. Calculation of Rydberg interaction potentials. J. Phys. B: At. Mol. Opt. Phys. 50, 133001 (2017) – 10.1088/1361-6455/aa743a
  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019) – 10.1126/science.aax1265
  • Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019) – 10.1088/1367-2630/ab428d