Authors

S. Blanes, P.C. Moan

Abstract

We present new symmetric fourth and sixth-order symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. We studied compositions using several extra stages, optimising the efficiency. An effective error, E f , is defined and an extensive search is carried out using the extra parameters. The new methods have smaller values of E f than other methods found in the literature. When applied to several examples they perform up to two orders of magnitude better than previously known method, which is in very good agreement with the values of E f .

Keywords

Differential equations; Geometric integrators; Partitioned Runge–Kutta; Runge–Kutta–Nyström; Optimised efficiency

Citation

  • Journal: Journal of Computational and Applied Mathematics
  • Year: 2002
  • Volume: 142
  • Issue: 2
  • Pages: 313–330
  • Publisher: Elsevier BV
  • DOI: 10.1016/s0377-0427(01)00492-7

BibTeX

@article{Blanes_2002,
  title={{Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods}},
  volume={142},
  ISSN={0377-0427},
  DOI={10.1016/s0377-0427(01)00492-7},
  number={2},
  journal={Journal of Computational and Applied Mathematics},
  publisher={Elsevier BV},
  author={Blanes, S. and Moan, P.C.},
  year={2002},
  pages={313--330}
}

Download the bib file

References

  • Blanes, S., Casas, F. & Ros, J. Symplectic Integration with Processing: A General Study. SIAM Journal on Scientific Computing vol. 21 711–727 (1999) – 10.1137/s1064827598332497
  • Blanes, S. & Moan, P. C. Splitting methods for the time-dependent Schrödinger equation. Physics Letters A vol. 265 35–42 (2000) – 10.1016/s0375-9601(99)00866-x
  • Blanes, S. & Moan, P. C. Splitting Methods for Non-autonomous Hamiltonian Equations. Journal of Computational Physics vol. 170 205–230 (2001) – 10.1006/jcph.2001.6733
  • Calvo, M. P. & Sanz-Serna, J. M. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem. SIAM Journal on Scientific Computing vol. 14 936–952 (1993) – 10.1137/0914057
  • Candy, J. & Rozmus, W. A symplectic integration algorithm for separable Hamiltonian functions. Journal of Computational Physics vol. 92 230–256 (1991) – 10.1016/0021-9991(91)90299-z
  • Cary, J. R. & Doxas, I. An Explicit Symplectic Integration Scheme for Plasma Simulations. Journal of Computational Physics vol. 107 98–104 (1993) – 10.1006/jcph.1993.1127
  • Channell, P. J. & Scovel, C. Symplectic integration of Hamiltonian systems. Nonlinearity vol. 3 231–259 (1990) – 10.1088/0951-7715/3/2/001
  • Dragt, A. J. Computation of Maps for Particle and Light Optics by Scaling, Splitting, and Squaring. Physical Review Letters vol. 75 1946–1948 (1995) – 10.1103/physrevlett.75.1946
  • Forest, É. Sixth-order lie group integrators. Journal of Computational Physics vol. 99 209–213 (1992) – 10.1016/0021-9991(92)90203-b
  • Forest, E. & Ruth, R. D. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena vol. 43 105–117 (1990) – 10.1016/0167-2789(90)90019-l
  • Gladman, B., Duncan, M. & Candy, J. Symplectic integrators for long-term integrations in celestial mechanics. Celestial Mechanics and Dynamical Astronomy vol. 52 221–240 (1991) – 10.1007/bf00048485
  • Gray, S. K. & Manolopoulos, D. E. Symplectic integrators tailored to the time-dependent Schrödinger equation. The Journal of Chemical Physics vol. 104 7099–7112 (1996) – 10.1063/1.471428
  • Kahan, W. & Li, R.-C. Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Mathematics of Computation vol. 66 1089–1099 (1997) – 10.1090/s0025-5718-97-00873-9
  • Kinoshita, H., Yoshida, H. & Nakai, H. Symplectic integrators and their application to dynamical astronomy. CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY vol. 50 59–71 (1991) – 10.1007/bf00048986
  • Chou, L.-Y. & Sharp, P. W. On order 5 symplectic explicit Runge-Kutta Nyström methods. Journal of Applied Mathematics and Decision Sciences vol. 4 143–150 (2000) – 10.1155/s1173912600000109
  • McLachlan, R. I. & Atela, P. The accuracy of symplectic integrators. Nonlinearity vol. 5 541–562 (1992) – 10.1088/0951-7715/5/2/011
  • McLachlan, R. I. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods. SIAM Journal on Scientific Computing vol. 16 151–168 (1995) – 10.1137/0916010
  • Murua, A. & Sanz–Serna, J. M. Order conditions for numerical integrators obtained by composing simpler integrators. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences vol. 357 1079–1100 (1999) – 10.1098/rsta.1999.0365
  • Okunbor, D. I. & Skeel, R. D. Canonical Runge—Kutta—Nyström methods of orders five and six. Journal of Computational and Applied Mathematics vol. 51 375–382 (1994) – 10.1016/0377-0427(92)00119-t
  • Sanz-Serna, (1994)
  • Suzuki, M. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A vol. 146 319–323 (1990) – 10.1016/0375-9601(90)90962-n
  • Suzuki, M. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics vol. 32 400–407 (1991) – 10.1063/1.529425
  • Suzuki, M. General theory of higher-order decomposition of exponential operators and symplectic integrators. Physics Letters A vol. 165 387–395 (1992) – 10.1016/0375-9601(92)90335-j
  • Wisdom, J. & Holman, M. Symplectic maps for the n-body problem. The Astronomical Journal vol. 102 1528 (1991) – 10.1086/115978
  • Yoshida, H. Construction of higher order symplectic integrators. Physics Letters A vol. 150 262–268 (1990) – 10.1016/0375-9601(90)90092-3