Power Transference Controller Design between two DC Microgrids Interconnected via an Interleaved Boost Converter: A PI-PBC Approach
Authors
Oscar Danilo Montoya, César Leonardo Trujillo, Walter Gil-González
Abstract
This paper deals with the output voltage regulation problem in a direct current (DC) microgrid interfaced through an interleaved boost converter while the power transference is indirectly controlled. The interleaved boost converter is modeled using the averaging modeling theory to obtain a continuous bilinear dynamical model using a port-Hamiltonian (pH) representation. The pH representation is used to design an efficient controller with proportional and integral action that preserves the passive structure of the model during the closed-loop operation via passivity-based control theory (i.e., a PI-PBC design). At the same time, stability properties in the sense of Lyapunov are ensured. The proposed PI-PBC controller is compared against a nonlinear one based on the exact feedback control (EFC) theory. Numerical simulations in the PLECs software for MATLAB/Simulink reveal the effectiveness of the proposed EFL control in comparison with the EFC design when voltage and power variations are simultaneously tested.
Citation
- Journal: 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)
- Year: 2023
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/ccac58200.2023.10333519
BibTeX
@inproceedings{Montoya_2023,
title={{Power Transference Controller Design between two DC Microgrids Interconnected via an Interleaved Boost Converter: A PI-PBC Approach}},
DOI={10.1109/ccac58200.2023.10333519},
booktitle={{2023 IEEE 6th Colombian Conference on Automatic Control (CCAC)}},
publisher={IEEE},
author={Montoya, Oscar Danilo and Trujillo, César Leonardo and Gil-González, Walter},
year={2023},
pages={1--6}
}
References
- Dragicevic, T., Lu, X., Vasquez, J. C. & Guerrero, J. M. DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues. IEEE Transactions on Power Electronics vol. 31 3528–3549 (2016) – 10.1109/tpel.2015.2464277
- Gabbar, H. A. Smart energy grid infrastructures and interconnected micro energy grids. Smart Energy Grid Engineering 23–45 (2017) doi:10.1016/b978-0-12-805343-0.00002-4 – 10.1016/b978-0-12-805343-0.00002-4
- Ahmed, M., Meegahapola, L., Vahidnia, A. & Datta, M. Stability and Control Aspects of Microgrid Architectures–A Comprehensive Review. IEEE Access vol. 8 144730–144766 (2020) – 10.1109/access.2020.3014977
- Abdelgawad, H. & Sood, V. K. A Comprehensive Review on Microgrid Architectures for Distributed Generation. 2019 IEEE Electrical Power and Energy Conference (EPEC) (2019) doi:10.1109/epec47565.2019.9074800 – 10.1109/epec47565.2019.9074800
- Konar, S. & Ghosh, A. Interconnection of islanded DC microgrids. 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) 1–5 (2015) doi:10.1109/appeec.2015.7380986 – 10.1109/appeec.2015.7380986
- Vuyyuru, U., Maiti, S. & Chakraborty, C. Active Power Flow Control Between DC Microgrids. IEEE Transactions on Smart Grid vol. 10 5712–5723 (2019) – 10.1109/tsg.2018.2890548
- Lee, M., Choi, W., Kim, H. & Cho, B.-H. Operation schemes of interconnected DC microgrids through an isolated bi-directional DC-DC converter. 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) 2940–2945 (2015) doi:10.1109/apec.2015.7104769 – 10.1109/apec.2015.7104769
- Prabhakaran, P. & Agarwal, V. Novel Boost-SEPIC Type Interleaved DC–DC Converter for Mitigation of Voltage Imbalance in a Low-Voltage Bipolar DC Microgrid. IEEE Transactions on Industrial Electronics vol. 67 6494–6504 (2020) – 10.1109/tie.2019.2939991
- Verma, S. R., Ballal, M. S., Suryawanshi, H. M., Deshmukh, R. R. & Singh, R. Power Sharing between DC Microgrids through Interlink Non-isolated Cluster Converter. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 1–6 (2020) doi:10.1109/pedes49360.2020.9379623 – 10.1109/pedes49360.2020.9379623
- Kumar, G. V. B. & Palanisamy, K. Interleaved Boost Converter for Renewable Energy Application with Energy Storage System. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP) 1–5 (2019) doi:10.1109/icesip46348.2019.8938306 – 10.1109/icesip46348.2019.8938306
- Pathak, K., Trivedi, S. H. & Ayalani, M. H. Operation and Control of Non-isolated Interleaved Bidirectional DC-DC Converter Integrated with Solar PV system. 2019 IEEE International Conference on Innovations in Communication, Computing and Instrumentation (ICCI) 92–95 (2019) doi:10.1109/icci46240.2019.9404483 – 10.1109/icci46240.2019.9404483
- Cisneros, R. et al. Global Tracking Passivity-based PI Control of Bilinear Systems and its Application to the Boost and Modular Multilevel Converters∗∗Due to a lack of space the proofs were not included. The interested reader is referred to the full version Cisneros et al. (2015). IFAC-PapersOnLine vol. 48 420–425 (2015) – 10.1016/j.ifacol.2015.09.222
- Montoya, O. D., Serra, F. M., Gil-González, W., Asensio, E. M. & Bosso, J. E. An IDA-PBC Design with Integral Action for Output Voltage Regulation in an Interleaved Boost Converter for DC Microgrid Applications. Actuators vol. 11 5 (2021) – 10.3390/act11010005
- Montoya, O. D., Trujillo-Rodriguez, C. L., Gil-Gonzalez, W., Serra, F. M. & Asensio, E. M. Inverse Optimal Control Applied to Output Voltage Regulation in an Interleaved Boost Converter for Battery Applications. 2022 IEEE Biennial Congress of Argentina (ARGENCON) 1–7 (2022) doi:10.1109/argencon55245.2022.9939912 – 10.1109/argencon55245.2022.9939912
- Gil-González, W., Montoya, O. D., Riffo, S., Restrepo, C. & Muñoz, J. A Global Tracking Sensorless Adaptive PI-PBC Design for Output Voltage Regulation in a Boost Converter Feeding a DC Microgrid. Energies vol. 16 1106 (2023) – 10.3390/en16031106
- Gil-González, W. & Montoya, O. D. Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach. Journal of Energy Storage vol. 18 459–466 (2018) – 10.1016/j.est.2018.05.020
- Zonetti, D., Bergna‐Diaz, G., Ortega, R. & Monshizadeh, N. PID passivity‐based droop control of power converters: Large‐signal stability, robustness and performance. International Journal of Robust and Nonlinear Control vol. 32 1769–1795 (2021) – 10.1002/rnc.5917