Authors

Guido Blankenstein

Abstract

In this paper the method of power shaping, as recently introduced for the stabilization of non-linear RLC circuits, is generalized to a larger class of systems showing similarities (and important differences) with the class of port-controlled Hamiltonian systems. Other than for port-controlled Hamiltonian systems, the stabilization of these new systems is not stymied by a ‘dissipation obstacle’ and, in fact, every power-shaping controller is power balancing as well. It is shown that the power-shaping controller can be realized as a port-controlled Hamiltonian system connected by means of a gyrator to the plant. The theoretical results are applied to the class of non-linear RLC circuits described by Brayton–Moser’s equations, and a physical implementation of the controllers in terms of standard electrical circuit elements is given.

Citation

  • Journal: International Journal of Control
  • Year: 2005
  • Volume: 78
  • Issue: 3
  • Pages: 159–171
  • Publisher: Informa UK Limited
  • DOI: 10.1080/00207170500036191

BibTeX

@article{Blankenstein_2005,
  title={{Power balancing for a new class of non-linear systems and stabilization of RLC circuits}},
  volume={78},
  ISSN={1366-5820},
  DOI={10.1080/00207170500036191},
  number={3},
  journal={International Journal of Control},
  publisher={Informa UK Limited},
  author={Blankenstein, Guido},
  year={2005},
  pages={159--171}
}

Download the bib file

References

  • Blankenstein G, Preprints 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
  • Blankenstein, G. Geometric modeling of nonlinear RLC circuits. IEEE Trans. Circuits Syst. I 52, 396–404 (2005) – 10.1109/tcsi.2004.840481
  • Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
  • Bloch, A. M. & Crouch, P. E. Representations of Dirac structures on vector spaces and nonlinear L-C circuits. Proceedings of Symposia in Pure Mathematics 103–117 (1998) doi:10.1090/pspum/064/1654513 – 10.1090/pspum/064/1654513
  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
  • Breedveld, P. C. Thermodynamic Bond Graphs and the Problem of Thermal Inertance. Journal of the Franklin Institute 314, 15–40 (1982) – 10.1016/0016-0032(82)90050-3
  • Desoer CA, Basic Circuit Theory (1969)
  • Jeltsema D, Preprints 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
  • Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
  • Ortega R, Preprints 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
  • Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Automat. Contr. 48, 1762–1767 (2003) – 10.1109/tac.2003.817918
  • Ortega R, IFAC Latinoamerican Control Conference (2002)
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
  • Ortega R, IFAC World Conference (2002)
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Tellegen BDH, Philips Research Reports (1948)
  • Weiss, L., Mathis, W. & Trajkovic, L. A generalization of Brayton-Moser’s mixed potential function. IEEE Trans. Circuits Syst. I 45, 423–427 (1998) – 10.1109/81.669065