Port-Hamiltonian Systems: Structure Recognition and Applications
Authors
Abstract
In this paper, we continue to consider the problem of recovering the port-Hamiltonian structure for an arbitrary system of differential equations. We complement our previous study on this topic by explaining the choice of machine learning algorithms and discussing some details of their application. We also consider the possibility provided by this approach for a potentially new definition of canonical forms and classification of systems of differential equations.
Keywords
geometrization of mechanics; port-Hamiltonian systems; and machine learning methods for ODEs
Citation
- Journal: Programming and Computer Software
- Year: 2024
- Volume: 50
- Issue: 2
- Pages: 197–201
- Publisher: Pleiades Publishing Ltd
- DOI: 10.1134/s0361768824020130
BibTeX
@article{Salnikov_2024,
title={{Port-Hamiltonian Systems: Structure Recognition and Applications}},
volume={50},
ISSN={1608-3261},
DOI={10.1134/s0361768824020130},
number={2},
journal={Programming and Computer Software},
publisher={Pleiades Publishing Ltd},
author={Salnikov, V.},
year={2024},
pages={197--201}
}
References
- Salnikov, V., Hamdouni, A. & Loziienko, D. Generalized and graded geometry for mechanics: a comprehensive introduction. Mathematics and Mechanics of Complex Systems vol. 9 59–75 (2021) – 10.2140/memocs.2021.9.59
- Salnikov, V. and Hamdouni, A., Geometric integrators in mechanics: The need for computer algebra tools, Tr. Tret’ei Mezhdun. Konf. “Computer algebra” (Proc. 3rd Int. Conf. Computer Algebra), Moscow, 2019.
- Salnikov, V. N. & Hamdouni, A. Differential Geometry and Mechanics: A Source for Computer Algebra Problems. Programming and Computer Software vol. 46 126–132 (2020) – 10.1134/s0361768820020097
- Salnikov, V., Falaize, A. & Lozienko, D. Learning port-Hamiltonian Systems—Algorithms. Computational Mathematics and Mathematical Physics vol. 63 126–134 (2023) – 10.1134/s0965542523010104
- H.M. Paynter. Paynter, H.M., Analysis and Design of Engineering Systems, MIT Press, 1961. (1961)
- van der Schaft, A., Port-Hamiltonian systems: An introductory survey, Proc. Int. Congr. Math., Madrid, 2006.
- Sage manifolds: Differential geometry and tensor calculus with SageMath. https://sagemanifolds.obspm.fr
- Falaize, A., Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation hamiltonienne à ports, PhD thesis, Université Pierre et Marie Curie, 2016.
- Modeling, simulation and code-generation of multiphysical port-Hamiltonian systems in Python. https://github.com/pyphs/pyphs
- Edler, D., Holmgren, A., and Rosvall, M., Infomap: Network community detection using the MapEquation framework. https://www.mapequation.org/infomap
- Hairer, E., Lubich, C., and Wanner, G., Geometric numerical integration, Springer Ser. Comput. Math., 2006.
- Razafindralandy, D., Hamdouni, A. & Chhay, M. A review of some geometric integrators. Advanced Modeling and Simulation in Engineering Sciences vol. 5 (2018) – 10.1186/s40323-018-0110-y
- Razafindralandy, D., Salnikov, V., Hamdouni, A. & Deeb, A. Some robust integrators for large time dynamics. Advanced Modeling and Simulation in Engineering Sciences vol. 6 (2019) – 10.1186/s40323-019-0130-2
- Cosserat, O. Symplectic groupoids for Poisson integrators. Journal of Geometry and Physics vol. 186 104751 (2023) – 10.1016/j.geomphys.2023.104751
- Cosserat, O., Laurent-Gengoux, C. & Salnikov, V. Numerical methods in Poisson geometry and their application to mechanics. Mathematics and Mechanics of Solids vol. 29 904–923 (2024) – 10.1177/10812865231217096