Port-Hamiltonian System Modelling and Geometric Numerical Integrator for Synchronous Generators
Authors
Xinhua Yan, Chongtao Li, Chao Duan
Abstract
Electromagnetic transient (EMT) simulation is of fundamental importance for the design and operation of modern power systems. The solution of EMT models relies on numerical integration methods whose performance depends on the structure, scale, and stiffness of the system models. In this paper, we develop a synchronous generator model that maintains the underlying physical structure. In particular, a synchronous generator is represented as the interconnection of energy storage ports, dissipation ports, and external ports, leading to a canonical port-Hamiltonian system formulation. By exploiting the port-Hamiltonian structure, we introduce an energy-related invariant quantity for the developed model and construct a geometric numerical integrator based on the discrete gradient. This geometric numerical integrator can exactly maintain the energy-related invariant in the discrete-time solution. Numerical experiments verify the energy-preserving property of the proposed geometric. Comparative analysis with the Runge-Kutta method and the implicit trapezoidal method shows that, the energy-preserving geometric numerical integrator has better long-term numerical stability and accuracy especially at relatively large integration steps.
Citation
- Journal: 2024 5th International Conference on Power Engineering (ICPE)
- Year: 2024
- Volume:
- Issue:
- Pages: 185–189
- Publisher: IEEE
- DOI: 10.1109/icpe64565.2024.10929292
BibTeX
@inproceedings{Yan_2024,
title={{Port-Hamiltonian System Modelling and Geometric Numerical Integrator for Synchronous Generators}},
DOI={10.1109/icpe64565.2024.10929292},
booktitle={{2024 5th International Conference on Power Engineering (ICPE)}},
publisher={IEEE},
author={Yan, Xinhua and Li, Chongtao and Duan, Chao},
year={2024},
pages={185--189}
}
References
- Woodford, D., Irwin, G. & Gudmundsdottir, U. S. PSCAD/EMTDC. Numerical Analysis of Power System Transients and Dynamics 135–167 (2015) doi:10.1049/pbpo078e_ch4 – 10.1049/pbpo078e_ch4
- GmbH, Digsilent powerfactory official website. (2024)
- Geometric Numerical Integration. Springer Series in Computational Mathematics (Springer-Verlag, 2006). doi:10.1007/3-540-30666-8 – 10.1007/3-540-30666-8
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Celledoni, Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian Systems. arXiv:1706.08621 [math] (2017)
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters 133, 104530 (2019) – 10.1016/j.sysconle.2019.104530
- McLachlan, R. I. & Quispel, G. R. W. Splitting methods. Acta Numerica 11, 341–434 (2002) – 10.1017/s0962492902000053
- Schulze, Structure-Preserving Time Discretization of PortHamiltonian Systems via Discrete Gradient Pairs. arXiv:2311.00403 [cs, math] (2023)
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Anderson, P. M. & Fouad, A. A. Power System Control and Stability. (2002) doi:10.1109/9780470545577 – 10.1109/9780470545577