Port-Hamiltonian representation of metriplectic systems and their interconnection
Authors
Jonas Kirchhoff, Bernhard Maschke
Abstract
We study port-control for metriplectic systems. Using the well-known representation of metriplectic systems as dissipative Hamiltonian systems with the exergy as Hamiltonian function, the corresponding port-controlled Hamiltonian systems are considered as exergy-controlled metriplectic systems. The applicability of the machinery of port-Hamiltonian systems theory, in particular interconnection of exergy controlled metriplectic systems, is studied.
Keywords
dissipative systems, metriplectic systems, port hamiltonian systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2025
- Volume: 59
- Issue: 19
- Pages: 526–531
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2025.11.088
- Note: 13th IFAC Symposium on Nonlinear Control Systems NOLCOS 2025- Reykjavík, Iceland, July 23-25, 2025
BibTeX
@article{Kirchhoff_2025,
title={{Port-Hamiltonian representation of metriplectic systems and their interconnection}},
volume={59},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2025.11.088},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kirchhoff, Jonas and Maschke, Bernhard},
year={2025},
pages={526--531}
}References
- Barbero-Liñán M, Cendra H, García-Toraño Andrés E, Martín de Diego D (2018) New insights in the geometry and interconnection of port-Hamiltonian systems. J Phys A: Math Theor 51(37):375201. https://doi.org/10.1088/1751-8121/aad4b – 10.1088/1751-8121/aad4ba
- Cervera J, van der Schaft AJ, Baños A (2007) Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43(2):212–225. https://doi.org/10.1016/j.automatica.2006.08.01 – 10.1016/j.automatica.2006.08.014
- Favache A, Dochain D, Maschke B (2010) An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science 65(18):5204–5216. https://doi.org/10.1016/j.ces.2010.06.01 – 10.1016/j.ces.2010.06.019
- Greub, (1972)
- Grmela M (1984) Bracket formulation of dissipative fluid mechanics equations. Physics Letters A 102(8):355–358. https://doi.org/10.1016/0375-9601(84)90297- – 10.1016/0375-9601(84)90297-4
- Grmela M (2018) GENERIC guide to the multiscale dynamics and thermodynamics. J Phys Commun 2(3):032001. https://doi.org/10.1088/2399-6528/aab64 – 10.1088/2399-6528/aab642
- Guha P (2007) Metriplectic structure, Leibniz dynamics and dissipative systems. Journal of Mathematical Analysis and Applications 326(1):121–136. https://doi.org/10.1016/j.jmaa.2006.02.02 – 10.1016/j.jmaa.2006.02.023
- Jeltsema, (2014)
- Jongschaap R, Öttinger HC (2004) The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics 120(1–3):3–9. https://doi.org/10.1016/j.jnnfm.2003.11.00 – 10.1016/j.jnnfm.2003.11.008
- Kaufman AN (1984) Dissipative hamiltonian systems: A unifying principle. Physics Letters A 100(8):419–422. https://doi.org/10.1016/0375-9601(84)90634- – 10.1016/0375-9601(84)90634-0
- Maschke BM, van der Schaft AJ (1993) PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–36 – 10.1016/b978-0-08-041901-5.50064-6
- Morrison PJ (1984) Bracket formulation for irreversible classical fields. Physics Letters A 100(8):423–427. https://doi.org/10.1016/0375-9601(84)90635- – 10.1016/0375-9601(84)90635-2
- Morrison PJ (1986) A paradigm for joined Hamiltonian and dissipative systems. Physica D: Nonlinear Phenomena 18(1–3):410–419. https://doi.org/10.1016/0167-2789(86)90209- – 10.1016/0167-2789(86)90209-5
- Ortega J-P, Planas-Bielsa V (2004) Dynamics on Leibniz manifolds. Journal of Geometry and Physics 52(1):1–27. https://doi.org/10.1016/j.geomphys.2004.01.00 – 10.1016/j.geomphys.2004.01.002
- (2001) Putting energy back in control. IEEE Control Syst 21(2):18–33. https://doi.org/10.1109/37.91539 – 10.1109/37.915398
- Öttinger, (2005)
- Pavelka, (2018)
- Sciubba, A brief commented history of exergy from the beginnings to 2004. International Journal of Thermodynamics (2007)