Authors

Majid Pahlevani, null Shangzhi Pan, Jonathan Mash, Praveen Jain

Abstract

This paper presents a novel control approach to improve the dynamic response of wind energy control systems (WECS) that use a permanent magnet synchronous generator (PMSG) operating under a wide input and load range. In this paper, it’s shown that WECS is classified as a Port-Controlled Hamiltonian (PCH) system. Therefore, a nonlinear controller based on PCH is proposed, which is able to robustly control the WECS under parameter uncertainties and disturbances. The performance of the PCH-based controller is evaluated through simulation. Also, the proposed controller is implemented on an experimental prototype. Simulation and experimental results show a robust and fast transient performance compared to the conventional dq-controller.

Citation

  • Journal: 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)
  • Year: 2014
  • Volume:
  • Issue:
  • Pages: 1–5
  • Publisher: IEEE
  • DOI: 10.1109/pedg.2014.6878698

BibTeX

@inproceedings{Pahlevani_2014,
  title={{Port-Controlled Hamiltonian (PCH)-based control approach for wind energy conversion systems}},
  DOI={10.1109/pedg.2014.6878698},
  booktitle={{2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)}},
  publisher={IEEE},
  author={Pahlevani, Majid and Shangzhi Pan and Mash, Jonathan and Jain, Praveen},
  year={2014},
  pages={1--5}
}

Download the bib file

References

  • Ghaffari, A., Krstic, M. & Seshagiri, S. Power Optimization for Photovoltaic Microconverters Using Multivariable Newton-Based Extremum Seeking. IEEE Trans. Contr. Syst. Technol. 22, 2141–2149 (2014) – 10.1109/tcst.2014.2301172
  • Revel, G., Leon, A. E., Alonso, D. M. & Moiola, J. L. Dynamics and Stability Analysis of a Power System With a PMSG-Based Wind Farm Performing Ancillary Services. IEEE Trans. Circuits Syst. I 61, 2182–2193 (2014) – 10.1109/tcsi.2014.2298281
  • Tran, D.-H., Sareni, B., Roboam, X. & Espanet, C. Integrated Optimal Design of a Passive Wind Turbine System: An Experimental Validation. IEEE Trans. Sustain. Energy 1, 48–56 (2010) – 10.1109/tste.2010.2046685
  • Wang, J., Xu, D., Wu, B. & Luo, Z. A Low-Cost Rectifier Topology for Variable-Speed High-Power PMSG Wind Turbines. IEEE Trans. Power Electron. 26, 2192–2200 (2011) – 10.1109/tpel.2011.2106143
  • Wind Power in Power Systems. (2005) doi:10.1002/0470012684 – 10.1002/0470012684
  • (2012)
  • Global Wind Energy Commission (2011)
  • Tsai, J. & Tan, K. H APF harmonic mitigation technique for PMSG wind energy conversion system. 2007 Australasian Universities Power Engineering Conference 1–6 (2007) doi:10.1109/aupec.2007.4548018 – 10.1109/aupec.2007.4548018
  • Li, H. & Chen, Z. Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2, 123–138 (2008) – 10.1049/iet-rpg:20070044
  • Baroudi, J. A., Dinavahi, V. & Knight, A. M. A review of power converter topologies for wind generators. IEEE International Conference on Electric Machines and Drives, 2005. 458–465 (2005) doi:10.1109/iemdc.2005.195763 – 10.1109/iemdc.2005.195763
  • Benelghali, S., Benbouzid, M. E. H. & Charpentier, J. F. Comparison of PMSG and DFIG for marine current turbine applications. The XIX International Conference on Electrical Machines - ICEM 2010 1–6 (2010) doi:10.1109/icelmach.2010.5608118 – 10.1109/icelmach.2010.5608118
  • Liserre, M., Cardenas, R., Molinas, M. & Rodriguez, J. Overview of Multi-MW Wind Turbines and Wind Parks. IEEE Trans. Ind. Electron. 58, 1081–1095 (2011) – 10.1109/tie.2010.2103910
  • Kazmi, S. M. R., Goto, H., Guo, H.-J. & Ichinokura, O. A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE Trans. Ind. Electron. 58, 29–36 (2011) – 10.1109/tie.2010.2044732
  • lundberg, Wind farm configuration and energy efficiency studies series DC versus AC layouts (2006)