Photon routing based on non-chiral interaction between atoms and waveguides
Authors
Wang-Rui Zhang, Tao Shui, Yi-Lou Liu, Ning Ji, Wen-Xing Yang
Abstract
The photon router plays an essential role in the optical quantum network. However, conventional routers generally couple photons chirally into waveguides to achieve complete transmission from the input port to the required port. Here, we use non-chiral photon-atom interactions for targeted routing. The system consists of two V-type three-level atoms and two parallel waveguides. In addition, the two atoms are driven by external coherent fields, respectively. With a real-space Hamiltonian, the probability of photon transmitted to four ports can be obtained. The study shows that a single photon input from the left port of the waveguide-a can be deterministically transferred to any of the four ports of the two waveguides by adjusting the detuning of the atom and the driving field on the atom, as well as the distance between the two atoms.
Citation
- Journal: Laser Physics Letters
- Year: 2022
- Volume: 19
- Issue: 1
- Pages: 015203
- Publisher: IOP Publishing
- DOI: 10.1088/1612-202x/ac3a0b
BibTeX
@article{Zhang_2021,
title={{Photon routing based on non-chiral interaction between atoms and waveguides}},
volume={19},
ISSN={1612-202X},
DOI={10.1088/1612-202x/ac3a0b},
number={1},
journal={Laser Physics Letters},
publisher={IOP Publishing},
author={Zhang, Wang-Rui and Shui, Tao and Liu, Yi-Lou and Ji, Ning and Yang, Wen-Xing},
year={2021},
pages={015203}
}
References
- Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015) – 10.1103/revmodphys.87.347
- Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N. & Nori, F. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, (2011) – 10.1103/physrevb.84.045310
- Zheng, H. & Baranger, H. U. Persistent Quantum Beats and Long-Distance Entanglement from Waveguide-Mediated Interactions. Phys. Rev. Lett. 110, (2013) – 10.1103/physrevlett.110.113601
- Zheng, H., Gauthier, D. J. & Baranger, H. U. Waveguide-QED-Based Photonic Quantum Computation. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.090502
- Gonzalez-Ballestero, C., Moreno, E. & Garcia-Vidal, F. J. Generation, manipulation, and detection of two-qubit entanglement in waveguide QED. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.042328
- Facchi, P. et al. Bound states and entanglement generation in waveguide quantum electrodynamics. Phys. Rev. A 94, (2016) – 10.1103/physreva.94.043839
- Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum State Transfer via Noisy Photonic and Phononic Waveguides. Phys. Rev. Lett. 118, (2017) – 10.1103/physrevlett.118.133601
- Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008) – 10.1038/nature07127
- Cheng, M.-T., Ma, X., Fan, J.-W., Xu, J. & Zhu, C. Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter. Opt. Lett. 42, 2914 (2017) – 10.1364/ol.42.002914
- Zhou, L., Yang, L.-P., Li, Y. & Sun, C. P. Quantum Routing of Single Photons with a Cyclic Three-Level System. Phys. Rev. Lett. 111, (2013) – 10.1103/physrevlett.111.103604
- Agarwal, G. S. & Huang, S. Optomechanical systems as single-photon routers. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.021801
- Lu, J., Zhou, L., Kuang, L.-M. & Nori, F. Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.013805
- Sayrin, C. et al. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms. Phys. Rev. X 5, (2015) – 10.1103/physrevx.5.041036
- Yang, D.-C. et al. Phase-modulated single-photon router. Phys. Rev. A 98, (2018) – 10.1103/physreva.98.063809
- Yan, W.-B. & Fan, H. Single-photon quantum router with multiple output ports. Sci Rep 4, (2014) – 10.1038/srep04820
- Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014) – 10.1126/science.1254699
- Li, J.-Y., Li, X.-L. & Yan, G.-A. Single-photon quantum router based on asymmetric intercavity couplings. Commun. Theor. Phys. 72, 055101 (2020) – 10.1088/1572-9494/ab7ed5
- Roy, D. Few-photon optical diode. Phys. Rev. B 81, (2010) – 10.1103/physrevb.81.155117
- Shen, Y., Bradford, M. & Shen, J.-T. Single-Photon Diode by Exploiting the Photon Polarization in a Waveguide. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.173902
- Wang, X. et al. Tunable single-photon diode and circulator via chiral waveguide–emitter couplings. Laser Phys. Lett. 17, 065201 (2020) – 10.1088/1612-202x/ab8557
- Kuo, P.-C., Chen, G.-Y. & Chen, Y.-N. Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci Rep 6, (2016) – 10.1038/srep37766
- Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016) – 10.1126/science.aaj2118
- Cheng, M.-T., Ma, X.-S., Zhang, J.-Y. & Wang, B. Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24, 19988 (2016) – 10.1364/oe.24.019988
- Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, (2015) – 10.1103/physreva.91.042116
- Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum Networks with Chiral-Light–Matter Interaction in Waveguides. Phys. Rev. Lett. 117, (2016) – 10.1103/physrevlett.117.240501
- Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015) – 10.1103/revmodphys.87.1379
- Lemr, K., Bartkiewicz, K., Černoch, A. & Soubusta, J. Resource-efficient linear-optical quantum router. Phys. Rev. A 87, (2013) – 10.1103/physreva.87.062333
- Hoi, I.-C. et al. Demonstration of a Single-Photon Router in the Microwave Regime. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.073601
- Zueco, D., Galve, F., Kohler, S. & Hänggi, P. Quantum router based on ac control of qubit chains. Phys. Rev. A 80, (2009) – 10.1103/physreva.80.042303
- Aoki, T. et al. Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity. Phys. Rev. Lett. 102, (2009) – 10.1103/physrevlett.102.083601
- Zang, X. & Jiang, C. Single-photon transport properties in a waveguide–cavity system. J. Phys. B: At. Mol. Opt. Phys. 43, 065505 (2010) – 10.1088/0953-4075/43/6/065505
- Xu, X.-W. & Li, Y. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a weakly nonlinear cavity. Phys. Rev. A 90, (2014) – 10.1103/physreva.90.033832
- Liao, J.-Q. & Law, C. K. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, (2010) – 10.1103/physreva.82.053836
- Cheng, M.-T., Ma, X.-S., Ding, M.-T., Luo, Y.-Q. & Zhao, G.-X. Single-photon transport in one-dimensional coupled-resonator waveguide with local and nonlocal coupling to a nanocavity containing a two-level system. Phys. Rev. A 85, (2012) – 10.1103/physreva.85.053840
- Xia, Router via the direct quantum control of coupling between cavity modes. Phys. Rev. X (2013)
- Shi, T., Fan, S. & Sun, C. P. Two-photon transport in a waveguide coupled to a cavity in a two-level system. Phys. Rev. A 84, (2011) – 10.1103/physreva.84.063803
- Yan, C.-H., Jia, W.-Z. & Wei, L.-F. Controlling single-photon transport with three-level quantum dots in photonic crystals. Phys. Rev. A 89, (2014) – 10.1103/physreva.89.033819
- Cheng, M.-T. & Song, Y.-Y. Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978 (2012) – 10.1364/ol.37.000978
- Roy, D. Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions. Phys. Rev. A 83, (2011) – 10.1103/physreva.83.043823
- Cheng, M.-T., Luo, Y.-Q., Wang, P.-Z. & Zhao, G.-X. Coherent controlling plasmon transport properties in metal nanowire coupled to quantum dot. Applied Physics Letters 97, (2010) – 10.1063/1.3514245
- Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007) – 10.1038/nature06230
- Hétet, G., Slodička, L., Hennrich, M. & Blatt, R. Single Atom as a Mirror of an Optical Cavity. Phys. Rev. Lett. 107, (2011) – 10.1103/physrevlett.107.133002
- Li, X. & Wei, L. F. Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92, (2015) – 10.1103/physreva.92.063836
- Yan, C.-H., Li, Y., Yuan, H. & Wei, L. F. Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, (2018) – 10.1103/physreva.97.023821
- Chen, X.-Y., Zhang, F.-Y. & Li, C. Single-photon quantum router by two distant artificial atoms. J. Opt. Soc. Am. B 33, 583 (2016) – 10.1364/josab.33.000583
- Mukhopadhyay, D. & Agarwal, G. S. Multiple Fano interferences due to waveguide-mediated phase coupling between atoms. Phys. Rev. A 100, (2019) – 10.1103/physreva.100.013812
- Shen, J.-T. & Fan, S. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, (2009) – 10.1103/physreva.79.023837
- Shen, J. T. & Fan, S. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005) – 10.1364/ol.30.002001