Authors

Seung‐Ju Lee, Kwang‐Kyo Oh, Hyo‐Sung Ahn

Abstract

This article studies output synchronisation of a set of non‐linear interconnected systems and general linear interconnected systems. It will be shown that output synchronisation of the systems can be achieved by adding a new coupling interconnections (consensus algorithm) to the existing interconnections if the input and output relationship of the given system is passive. The output synchronisation scheme will then be applied to a class of interconnected non‐linear systems with the special structure of port‐controlled Hamiltonian (PCH) dynamics. Since the structure of the PCH systems is restrictive, we further present a synthesis of state feedback controller to overcome the restriction. This result will be applied to multi‐machine power systems. As the second part of this paper, the output synchronisation of general linear interconnected systems will be ensured. In the case of linear interconnected systems, the synchronisation can be achieved by a decentralised observer‐based output feedback control scheme. The controller and observer gains will be calculated from decentralised linear matrix inequality conditions. Simulation tests are conducted to evaluate the performance of the proposed methods.

Citation

  • Journal: IET Control Theory & Applications
  • Year: 2013
  • Volume: 7
  • Issue: 2
  • Pages: 234–245
  • Publisher: Institution of Engineering and Technology (IET)
  • DOI: 10.1049/iet-cta.2012.0661

BibTeX

@article{Lee_2013,
  title={{Passivity‐based output synchronisation of port‐controlled Hamiltonian and general linear interconnected systems}},
  volume={7},
  ISSN={1751-8652},
  DOI={10.1049/iet-cta.2012.0661},
  number={2},
  journal={IET Control Theory & Applications},
  publisher={Institution of Engineering and Technology (IET)},
  author={Lee, Seung‐Ju and Oh, Kwang‐Kyo and Ahn, Hyo‐Sung},
  year={2013},
  pages={234--245}
}

Download the bib file

References

  • Tyson J.J., The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol (1978)
  • D’Andrea, R. & Dullerud, G. E. Distributed control design for spatially interconnected systems. IEEE Trans. Automat. Contr. 48, 1478–1495 (2003) – 10.1109/tac.2003.816954
  • Alvarado, F. L., Meng, J., DeMarco, C. L. & Mota, W. S. Stability analysis of interconnected power systems coupled with market dynamics. IEEE Trans. Power Syst. 16, 695–701 (2001) – 10.1109/59.962415
  • Moylan, P. & Hill, D. Stability criteria for large-scale systems. IEEE Trans. Automat. Contr. 23, 143–149 (1978) – 10.1109/tac.1978.1101721
  • Swaroop, D. & Hedrick, J. K. String stability of interconnected systems. IEEE Trans. Automat. Contr. 41, 349–357 (1996) – 10.1109/9.486636
  • Chen, G. & Duan, Z. Network synchronizability analysis: A graph-theoretic approach. Chaos: An Interdisciplinary Journal of Nonlinear Science 18, (2008) – 10.1063/1.2965530
  • DeLellis, P., diBernardo, M. & Garofalo, F. Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica 45, 1312–1318 (2009) – 10.1016/j.automatica.2009.01.001
  • Pecora, L. M. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) – 10.1103/physrevlett.64.821
  • Maoyin Chen. Chaos Synchronization in Complex Networks. IEEE Trans. Circuits Syst. I 55, 1335–1346 (2008) – 10.1109/tcsi.2008.916436
  • Scardovi, L. & Sepulchre, R. Synchronization in networks of identical linear systems. Automatica 45, 2557–2562 (2009) – 10.1016/j.automatica.2009.07.006
  • Wang, L., Dai, H., Kong, X. & Sun, Y. Synchronization of uncertain complex dynamical networks via adaptive control. Intl J Robust & Nonlinear 19, 495–511 (2008) – 10.1002/rnc.1326
  • Wang, Y., Xiao, J. & Wang, H. O. Global synchronization of complex dynamical networks with network failures. Intl J Robust & Nonlinear 20, 1667–1677 (2010) – 10.1002/rnc.1537
  • Yu Liang & Marquez, H. J. Robust Gain Scheduling Synchronization Method for Quadratic Chaotic Systems With Channel Time Delay. IEEE Trans. Circuits Syst. I 56, 604–615 (2009) – 10.1109/tcsi.2008.2002656
  • Jin, X.-Z. & Yang, G.-H. Adaptive Synchronization of a Class of Uncertain Complex Networks Against Network Deterioration. IEEE Trans. Circuits Syst. I 58, 1396–1409 (2011) – 10.1109/tcsi.2010.2097691
  • Stan, G.-B. & Sepulchre, R. Analysis of Interconnected Oscillators by Dissipativity Theory. IEEE Trans. Automat. Contr. 52, 256–270 (2007) – 10.1109/tac.2006.890471
  • Zhao, J., Hill, D. J. & Liu, T. Passivity-based output synchronization of dynamical networks with non-identical nodes. 49th IEEE Conference on Decision and Control (CDC) 7351–7356 (2010) doi:10.1109/cdc.2010.5717720 – 10.1109/cdc.2010.5717720
  • Chopra, N. & Spong, M. W. Output Synchronization of Nonlinear Systems with Time Delay in Communication. Proceedings of the 45th IEEE Conference on Decision and Control 4986–4992 (2006) doi:10.1109/cdc.2006.377258 – 10.1109/cdc.2006.377258
  • Scardovi, L., Arcak, M. & Sontag, E. D. Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach. IEEE Trans. Automat. Contr. 55, 1367–1379 (2010) – 10.1109/tac.2010.2041974
  • Xiao, F. & Wang, L. Consensus problems for high-dimensional multi-agent systems. IET Control Theory Appl. 1, 830–837 (2007) – 10.1049/iet-cta:20060014
  • He, W. & Cao, J. Consensus control for high-order multi-agent systems. IET Control Theory Appl. 5, 231–238 (2011) – 10.1049/iet-cta.2009.0191
  • Li, Z., Duan, Z. & Chen, G. Dynamic consensus of linear multi-agent systems. IET Control Theory Appl. 5, 19–28 (2011) – 10.1049/iet-cta.2009.0466
  • Khalil H.K., Nonlinear systems (2002)
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Ortega, R. Some Applications and Extensions of Interconnection and Damping Assignment Passivity – Based Control. IFAC Proceedings Volumes 36, 41–50 (2003) – 10.1016/s1474-6670(17)38865-1
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Kundur P., Power system stability and control (1994)
  • Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
  • Guo, Y., Hill, D. J. & Wang, Y. Nonlinear decentralized control of large-scale power systems. Automatica 36, 1275–1289 (2000) – 10.1016/s0005-1098(00)00038-8