Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction
Authors
Cecilia Cornejo, Luis Alvarez-Icaza
Abstract
Passivity-based control of under-actuated mechanical systems with nonlinear friction effects in the generalized coordinates of motion is analyzed in this paper. Nonlinear friction is modeled with a modified LuGre dynamic friction model. The internal states of the dynamic friction model are incorporated as generalized coordinates in a port-controlled Hamiltonian formulation for the complete mechanical system in such a way that all passivity properties of this formulation are preserved for the extended generalized coordinates system. Interconnection and damping assignment passivity-based control laws are developed for the models of two case studies: a building with a magneto-rheological damper and a double pendulum. Simulation results are also presented.
Citation
- Journal: Journal of Vibration and Control
- Year: 2012
- Volume: 18
- Issue: 7
- Pages: 1025–1042
- Publisher: SAGE Publications
- DOI: 10.1177/1077546311408469
BibTeX
@article{Cornejo_2011,
title={{Passivity based control of under-actuated mechanical systems with nonlinear dynamic friction}},
volume={18},
ISSN={1741-2986},
DOI={10.1177/1077546311408469},
number={7},
journal={Journal of Vibration and Control},
publisher={SAGE Publications},
author={Cornejo, Cecilia and Alvarez-Icaza, Luis},
year={2011},
pages={1025--1042}
}
References
- Acosta, J. A., Ortega, R. & Astolfi, A. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. Proceedings of the 2004 American Control Conference 3029–3034 vol.4 (2004) doi:10.23919/acc.2004.1384373 – 10.23919/acc.2004.1384373
- Armstrong-Hélouvry, B. Control of Machines with Friction. (Springer US, 1991). doi:10.1007/978-1-4615-3972-8 – 10.1007/978-1-4615-3972-8
- Barahanov, N. & Ortega, R. Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Trans. Automat. Contr. 45, 830–832 (2000) – 10.1109/9.847131
- Canudas de Wit, C., Olsson, H., Astrom, K. J. & Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40, 419–425 (1995) – 10.1109/9.376053
- Dahl, P. R. Solid Friction Damping of Mechanical Vibrations. AIAA Journal 14, 1675–1682 (1976) – 10.2514/3.61511
- Demmel, J. W. Applied Numerical Linear Algebra. (1997) doi:10.1137/1.9781611971446 – 10.1137/1.9781611971446
- Dyke, S. J., Spencer, B. F., Jr, Sain, M. K. & Carlson, J. D. An experimental study of MR dampers for seismic protection. Smart Mater. Struct. 7, 693–703 (1998) – 10.1088/0964-1726/7/5/012
- Gomez-Estern, F., Ortega, R., Rubio, F. R. & Aracil, J. Stabilization of a class of underactuated mechanical systems via total energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 2 1137–1143 – 10.1109/cdc.2001.981038
- Gómez-Estern, F., Van der Schaft, A. J. & Acosta, J. A. Passivation of underactuated systems with physical damping. IFAC Proceedings Volumes 37, 955–960 (2004) – 10.1016/s1474-6670(17)31349-6
- Haessig, D. A., Jr. & Friedland, B. On the Modeling and Simulation of Friction. Journal of Dynamic Systems, Measurement, and Control 113, 354–362 (1991) – 10.1115/1.2896418
- Jansen, L. M. & Dyke, S. J. Semiactive Control Strategies for MR Dampers: Comparative Study. J. Eng. Mech. 126, 795–803 (2000) – 10.1061/(asce)0733-9399(2000)126:8(795)
- Jiménez, R. & Álvarez-Icaza, L. LuGre friction model for a magnetorheological damper. Struct. Control Health Monit. 12, 91–116 (2004) – 10.1002/stc.58
- Kelly R, Control de movimiento de robots manipuladores (2003)
- Koopman, J., Jeltsema, D. & Verhaegen, M. Port-Hamiltonian formulation and analysis of the LuGre friction model. 2008 47th IEEE Conference on Decision and Control 3181–3186 (2008) doi:10.1109/cdc.2008.4739351 – 10.1109/cdc.2008.4739351
- Martinez-Rosas, J. C. & Alvarez-Icaza, L. Adaptive compensation of dynamic friction in an industrial robot. 2008 IEEE International Conference on Control Applications 1145–1150 (2008) doi:10.1109/cca.2008.4629664 – 10.1109/cca.2008.4629664
- Martinez-Rosas, J. C., Alvarez-Icaza, L. & Noriega-Pineda, D. Dynamic friction compensation in velocity control of servo-actuators. 2009 IEEE International Conference on Control Applications 54–59 (2009) doi:10.1109/cca.2009.5281001 – 10.1109/cca.2009.5281001
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Rabinowicz E, Friction and Wear of Materials (1995)
- Secchi Cristian SS, Control of Interactive Robotic Interfaces, A Port-Hamiltonian Approach (2007)
- Sepulchre, R., Janković, M. & Kokotović, P. V. Constructive Nonlinear Control. Communications and Control Engineering (Springer London, 1997). doi:10.1007/978-1-4471-0967-9 – 10.1007/978-1-4471-0967-9
- Van der Schaft AJ, L2-Gain and Passivity Techniques in Nonlinear Control (1999)
- Yao, G. Z., Yap, F. F., Chen, G., Li, W. H. & Yeo, S. H. MR damper and its application for semi-active control of vehicle suspension system. Mechatronics 12, 963–973 (2002) – 10.1016/s0957-4158(01)00032-0